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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAY. MEMORANDUM 1439

APPLICATION OF THE METHOD OF COORDINATE PERTURBATION
TQ UNSTEADY DUCT FLOWL

By Seymour C. Himmel

SUMMARY

The method of coordinate perturbation is applied to the unsteady flow
of a compressible fluid in duets of varisble cross section. Solutions,
in the form of perturbation series, are cobtained for unsteady flows in
ducts for which the logarithmic derivative of area varlation with respect
to the space coordinate is a function of the "smallness" parameter of the
perturbation series.

This technique is applied to the problem of the interaction of a
disturbance and a shock wave In a diffuser flow. It is found that, for =
special cholce of the function describing the disturbance, the path of the
shock wave can be expressed in closed form to first order. The method is
then applied to the determination of the flow field behind a shock wave
moving on a prescribed path in the x,t-plene. Perturbation-series solu-
tions for quite general shock paths are developed.

The perturbation-series solutions are compared with the more exact
solutione obtained by the application of the method of characteristics.
The approximate solutions are shown to be in reesonably accurate agreement
with the solutions obtailned by the method of characteristics.

I. INTRODUCTION

Problems involving the unsteady fiow of a compressible fluid in ducts
of variagble cross section are frequently encountered in the study of
nonsteady-state operation of air-breathing propulsion systems. At super-
sonic flight speeds such problems are often complicated by the presence of

IThe information presented herein constitutes the major part of a
thesis that was offered in partial fulfillment of the requirements for the
degree of doctor of philosophy, Case Institute of Technology, Cleveland,
Ohio, June 1958.
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shock waves 1n the flow. A typical example of a situation involving both
an unsteady duct flow and & shock wave is that which arises when the
throttle setting of a turbojet or a ramjet engine operating at supersonic
flight speed is changed. As a result of the change ofthrottle setting,
a disturbance 1s generated 1n the subsonlc flow region of the diffuser
that propagetes upstream in the diffuser and interacts wlth the shock
wave. The interaction of the disturbance and the shock wave causes the
latter to change 1ts position in the diffuser and lts strength. A knowl-
edge of the history of the shock motion end_of the flow variables within
the diffuser during such transient operation is of great value 1n the
study of engine dynsmics and the design of engine control systems.

The difficulties encountered in attempting the solution of the par-
tial differential equations describing the flow of a compressible fluld
are well known. The usual procedure in solving problenis governed by these
equations 1s toreduce them to a more managegble form by omitting terms
whose effects are of smell magnitude for the problem under investigation.
In the case of ducts of variable cross section, such simplifications lead
to the concept of quasi-one-dimensionsl flow commonly employed in steady-
flow theory. In the quasi-one-dimenslonal approximation, 1t is assumed
that the cross-sectlional area of the ductvaries slowly with distance
measured along the axls of the duct. Under these conditions the velocity
of the fluid 1s assumed to have the direction of the duct axis and all
flow .varlables are assumed to be uniform over any duct cross section.

For unsteady quasi<one-dimensional flows one has to'deQi, therefore, with
a single space coordinate and the time as the independent variasbles of
the problem. Even with these simplifications the equatlions cannot, in
general, be solved analytically.

In the main, unsteady quasili-one-dimensional flow problems have been
treated by the method of characteristics (cf. ref. 1 and the extensive
bibliography therein). Solutions are obtained by numerical methods or by
a combination of graphical and numerical methods. In elther case much
labor is involved and only the answer to an individual problem is ob-
tained. A reasonably accurate approximate analytical method for treating
unsteady quasi-one-dimenslonal flow problems 1s therefore desirable.

Among those who have studled unsteady duct flow by analyticel methods
are Kantrowitz (ref. 2) and R. E. Meyer (ref. 3). Kantrowitz studied the
formation and the stability of shock waves in duet flows by linearizing
the equations of motion. He was able to demonstrate the instability of
shock-free diffuser flows by this method. For diffuser .flows in which a
shock wave is a part of the equilibrium flow, he was able to demonsirate
the stability of the position of the shock. Because he was primarily
concerned with stabllity considerations, Kantrowltz considered disturb-
ances in the form of pulses, and his discussion of the interaction of a
shock wave and a disturbance centers sbout conditiong in the immediate
vieinity of the shock.

628
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Meyer treated waves of finite amplitude in ducts by considering the
relations among the derivatives of the Riemann invariants along the
characteristics. In this manner he developed a first-order theory for
advancing and receding wave fronts in shock-free duct flows. By means of
this theory, he demonstrated the inherent instablility of shock~free dif-
fuger flows and was able to give a partial solution for the interaction
of two wave fronts.

In what follows, an spproximate analytic method for treating the un-
steady quasi-one-dimensional flow of a perfect fluid is developed. This
method dlffers from those previocusly considered in that it is based on
the method of coordinate perturbations (ref. 4). Solutions, in the form
of perturbation series, are obtalned for unsteady flows in ducts for which
the logarithmic derivative of area varistion with respect to the space
coordinate is a function of the "smallness" parameter of the perturbation
series. These perturbation series have as independent variables the
characteristic parameters of the hyperbolic differential equations gov-
erning the flow. This technique is applied to the problem of the inter-
action of a disturbance and a shock wave in a diffuser flow. It is found
that, for a special choice of the function describing the disturbance,
the path of the shock wayve can be expressed in closed form to first order.
The method 1s then applied to the determination of the flow field behind
a shock wave moving on a prescribed path in the x,t-plane. Perturbation-
series solutions for quite general shock paths are developed.

The solutions obtalned by the approximate analytic method are com-
pared with the more exact solutions obtained by the application of the
method of characteristics using a finite-difference technique. The per-
turbation series solutions are shown to be in reasonably accurate agree-
ment with the solutions obtained by the method of characteristics.

The author is very pleased to be able to take this opportunity of
acknowledging his indebtedness to Professor G. Kuerti for his guidance,
encouragement, and many valuable suggestions and criticisms throughout
the preparation of thls thesis.

IT. APPLICATION OF THE METHOD OF COORDINATE PERTURBATION
TO QUASI-ONE-DIMENSIONAL, FLOW

In the usual perturbation theories for supersonic flow and wave
propagation, the solutions are represented by perturbation series in
which the flow wvariables are given as functions of the physical coordi-
nates of the problem. TFor example, for a small deviation from & uniform
two-dimensional steady flow, the velocity components u end v are
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given by expressions such as

u="U+ eu(l)(x,y) + ezu(z)(x,y) ey,
(2.1)
v o= ev(l)(x,.V) + eav(z)(x,y) oo

(a11 symbols are defined in the appendix.) In these equations, U is the

undisturbed flow velocity and u(l)(x,y) is & deviation (in the =x direc-
tion) from the uniform flow. The magnitude of the devlation 1s governed
by a "smsllness" parameter €. For many problems this method is adequate.
In some cases, however, such solutlons prove to be lnadequate; for exam-
ple, in the Prandtl-Meyer expansion in two-dimensional steady flow {cf.
section 2 of ref. 4).

For hyperbolic differential equations the characteristic parameters
are the natural independent varigbles. In a perturbation theory based on
the characteristlc form of the differential equations, 1t may be expected
that the difficulties encountered in the more usual perturbation method
may be avoided. Such a theory was developed by C. C. Lin (ref. 4) for
quasi-linear systems in two independent varilsbles; it 1s based on ideas
implied in the work of R. E. Meyer (ref. 3) and suggested by K. O.
Friedrichs (refs. 5 and 6). It is referred to as the method of "coordi-
nate perturbation.”

In this method characteristic parameters o and P are introduced,
and the physical coordinates (say, x and ¥y in two-dimensional steady
supersonic flow) as well as the flow variables u, v &Pe expressed in
terms of the parameters. The perturbation sdélution thus appears in the
form

J

u(o)(@;ﬁ) + Gu(l)(“)ﬁ) + ezucz)(a:ﬁ) + ’

o
il

= v(0)(a,p) +ev(1)(a,p) + Zv(2)(a,p) + - - -,

<
|

> (2.2)
= x0(a,p) + exM(a,p) + S Barp) + - - o,

»
[

0 1 2. (2

y = 7%%a,p) + e P(a,p) + A (Blap) + - -
Parametric representations, such as that given above, have disadvantages
assoclated with the mapping onto the characteristic plane. First, bounda-
ry conditions are normally specified in the physical plane, and it 1s
usually difficult to impose the boundary conditions in the plane of

characteristic parameters. Second, a single-valued solution in the plane

pees
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of characteristics could become multiple-valued in the physicel plane.
However, 1f, as in the case considered, the flow 1s a perturbation from a_
uniform state, the freedom in the choice of the characteristic parameters
makes it possible to avoid multiple-valued mappings and to specify the
boundary conditions easily.

In the paper in which the perturbation theory was developed, ILin
treated problems of two-dimensional steady supersonic flow and emphasized
the proper choice of the mapping, that is, of the parameters o and B.

He was able to glve a convergence proof for this case. In her thesis

(ref. 7), P. Fox applied the method to the propagation of plane ("strictly"

one~-dimensionsl), cylindrical, and spherical waves. She was gble to give
a convergence proof for the case of plane waves. In what follows, the

method of coordinate perturbation is applied to quasi-one—dlmensional
flow. .
A. Equations of Motion

The equations governing the homentroplc, quasi-one-dimensional flow
of a compressible fluid are (ref. 8):

113! ' ta! =
ulug, U, + re— cle . 0, (2.5)
1
2 2 Ay
1 —a _ iat —_— ! Tagl 2
c ux, + e u'e , + 1 ci, te'ul 35 0

where A' = A'(x') is the cross-sectional area of the duct at the station
x'. These equations are in terms of dimensional quantities. In what

follows, it will be convenlent to use dimensionless quantities for the
variables given by:

tlek !
u=E—l—-c=E—, t: *‘x= x"A A (2-4)

A A A

where the asterisk refers to the critical condition-of the basic steady-
flow problem; that is, where the local particle speed equals the local N
speed of sound. Transformation of equations (2.3) to equations involving
the dimensionless quantities does not change the form of the equations

but merely affects the boundary conditions.



8 - NACA TM 1439

When the dimensionless equations (2.3) are written in canonical form,
they become: o

X, = (u+c)s, )
Xg = (u - e)t,,
Ai > (2.5)

Uy, * 0cy, = - uc - tm,

ug - ccB = uc %? tB,J

Where , - — -

2
Yy -1

m

g

(2.86)

and o and B are the characteristic parameters. Thus, (2.3) is re-
placed by four differential equations for four unknowns in such a way that
each equation involves only differentiation with respect to one character-
istic parameter.

While the pair (2.3) is irreducible in the sense of reference 6 and
thus Riemann's method of integration can no longer be applied, equations
(2.3) or the equivalent system (2.5) can, of course,-be solved by the
application of the method of characteristics, and many solutions for par-
ticular problems have been calculated in this manner-(cf. for exsmple,
ref. 1). It is advantageous, however, to develop an approximate analytical
solution for perturbation problems governed by these equations. Such a
solution is obtained by the application of the method of coordinate
perturbation. -
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B. Perturbation Solution

A solution of equations (2.5) is sought in the form of perturbation

series given by

X = x(o)(a,,[a) + ex(l)(or,,B) + ezx(z)(a,ﬁ) + 00 )
t = 600(a,p) + et (a,p) + 6B ap) « - - -,
> (2.7)
u = ul0)(a,p) + eul(a,p) + ul®(a,p) + - - -,
c = c(o)(a,ﬁ) + ec(l)(m,B) + ezc(z)(a,ﬁ) + e

The solution is, of course, a function of the duct area variation A(x).
In order ito render the initial investigation as simple as possible, the
duct area was assumed to vary according to the relation

A = e b(%I) (2.8)

where b 18 a dimenslonless constant and I. is the dimensionless loca-
tion of the duct throat (ef. (2.4)). For this choice of area distribution,

equations (2.5) become

Xy = (u + c)tm, N

xg = (u - c)tﬁ,
(2.9)
u, + ccm = ucbtm,

-ucst.J

3
!
Q
[¢]

w
I
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Substitution of equations (2.7) into equations (2.9) yields

o 7 Moz N N\
“x n) = [ﬁz; en(u(n) + c(n)) entd? s
i ”a = _ n=0
> n () [‘” @ @[ a
n \n hal n n n . \n
€ x; | = € (u’ - e’} €t s
nZO P ng Ji= }
Z en(uén) + crcé,n)) =b [Z enc(nﬂ [Z enu(nﬂ [E entén{} ,
n=0 n=0 n= n=0

SR B et )

(2.10)

Upon expansion of these equations and equatlng the coeffic1ents of like
powers of—-—-€, there is obtained .o )

. ) 3
L8 ™ . c(?\))t_ék-?\),

k
Xﬁ(sk) _ 7;; WM _ c(?\))ték-?\),

(x) (x) olby (A (3-A) 4 (x-3) ;7 (2.11)
uy + ocy =D ;;; - c u ta Y,

X

d
uék) - ccék) = -b ;;; [:_ c(“)u(J'Kzlték‘J); k=o,1,z-':J

o~
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Typical sets of these equations are:

Zeroth order:

@) _ (0, (.00

Xm >

0
xéo) - (u( ) c(o))téo),

(2.12)
20 4 5o(0) _ 1,01 (0),(0)
uéo) - Ucéo) = - bu(o)c(o)téo)z)
First order: ~
) 2 @00 4 0y, (@), (o)
xél) G °-(0))tél) RS c(l))téo),
b (2.13)

(), o) . [(o) 1) , (O, u<1>c(°>)+,<°ﬂ,

u
[

Us

() o) L [co> ©,0) , (@), (1%(0))1;@.

It is of interest to note that,whereas the zeroth-order equations
are quasi-linear (they are identlcal in structure with (2.9)), the higher
order equations are linear and homogeneous in the unknowns of the same
order; that is, the coefficients of the unknowns are functions of the
solutions of the lower order equations. o

We wish to consider smell unsteady perturbations of a steady flow in
a duet; thus, the unperturbed flow should be a steady duct flow. This
unperturbed flow is represented by the zeroth-order solution. The steady
flow in a quasi-one-dimensional duct is completely determined by the con-
tinuity and Bernoulli equations in dimensionless form: Lo

-1 /2
A =<"+l [‘c+1 (2.14)

u + Gc =0 + 1. (2.15)
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These equations must be considered as time-Independent integrals of the
nondimensional form of equations (2.3) and, since equations (2.5) are
equivalent to equations (2.3), they are solutions of these also. The
zeroth-order equationes (2.12) are the same as equations (2.5) with the
area varlation given by equation (2.8) used to eveluate the term AX/A.

Thus, the solution of the zeroth-order equations is given by

o/2

(0)_ (0)42
eb(x L) =(U—Z_l‘>0/2 NONN '(1;_4-—%' , (2.16)
w02 | g 0)2 L 5y g, ' (2.17)

In order to proceed to the solutlion of-the higher order equations,
the zeroth-order solutions must be expressed as functions of o and B.
To determine the form taken by these functions, en example was chosen _
with o= 1 (v = 3). This choice of Yy permits a simple algebraic Fform

of the solution of equations (2.16) and (2.17) for w(0) ana ¢(0) g
functions of x(o). Por subsonic flow downstream of the throat, these

solutions are:
40 _ _ [1 _ 4[1 _ eZb(x(O)—Lﬂl/Z, (2.18)

«(0)_1yl1/2
,(0) =[:1 . 4\[_ 20(xO Li] / , (2.19)

from which it can be shown that
(0) 1/2
wl0) 4 o0 o /7 1 o PxTI-L)E (2.20)

©__ sz l+eb(x(°)-L7_)l/2_ (2.21)

The zeroth-order characteristics are determined from the first two
of equations (2.12). On a characteristic B = congtant, we have
therefore: -

(0)

u - C

2.0

[1 . P (x(o)-LE]

75 = VZ atlo) - (2.22)

62S
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Setting

e(x(0)y = H(x(0)-1)  (2.23)
whence

at = tb ax(0), (2.24)

equation (2.22) becomes

___Sﬁ_d - V2 attol,
(2.25)
g2 - g)?

Integrating this along the B = constant characteristic, we obtain

L=t - vzl o). (2.26)

At this stage the freedom of selection of the characteristic parameters
mentioned previously enters. This means that the equations are lnvariant
if one replaces a and B by a' = f(a) and B' = g(B). It can be
easlily demonstrated that under these circumstances we may stipulate that
a glven curve of the flow plane (i.e., the x,t-plane) should be the image
of a given curve of the o,B-plane. Now it is desired to have the
zeroth-order solution represent the initial steady flow in the channel;

that is, along the line t = 0, for example. Therefore, we select the
characteristic parameters such that.on t =0, x=a =B (i.e., the x-axis
is the image of o - B = 0). For this choice of the parameters, equation
(2.26) becomes .-

JIT-¢-1f /1 - CB) - 1} _ (0)
Tt 1 in T v 1 /2ot . (2.27)

Similarly, on an « = constant characteristic we have

T+ tla) -1l _ ~1T+E -1 _ (0)
1n Tty + 1 1n Woga +/2 bt . (2.28)
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Eliminating t(o) from the last two equations and solving for ¢, we
obtain . — .

b(x(0) L,
{=e (x )y —TLLE—E V-En, (2.29)
(n -¢)
where : -
/[ b(p-L)
E .- ~d (2.30)
/ b(B-L)
1 -e + 1
and i ) e
n = ~/1 + eb(d"L) + 1 - (2.31)
V1 + O ;
From these equations we obtain for the physical coordinates:
PLC)E % 1n l} ——T‘L% ~/-Enl, (2.32)
(n - &)
2
vz 60) = 1m % Mo - 2)2 - 4y * E)y/-En - (9 - £)}, (2.33)
Aln - £)2 - 4(n + )y=En + (1 - &)
By substituting equation (2.29) into equations (2.18) and (2.19), the
particle velocity and speed of sound are glven by "
1/2
(o) _ _ 1 _ 2_’\[_ 4. z:]
u -6 (n - &) (n - &)+ 16(n + £)° ¢q s (2.34)
J1/2
(0) _ G—%—HEH - e) '\/(n -8t v 1e(n + g)? gq_l . (2.35)

6228
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These rather formidable equations give the parameters of a steady
duct flow (i.e., the zeroth-order solution) in terms of the characteris-
tic parameters o and fB. The higher order approximations are glven by

linear equations where the coefficients are functions of the lower order

solutions. For example, the first-order equations (2.13) have coeffi-
cients derivable from equations (2.32) to (2.35). The higher order equa="
tions are, however, complicated and must be solved simultaneously. No
simple analytical technique seems applicable - perhaps a numerical tech-
nique would be feasible.

To illustrate the nature of the zeroth-order solution for the area
variation selected, an example was computed. The flow situation is 1l1-
lustrated in the sketch.

~— e LSS

———] -‘—c(o)—l -
L—""’—————’————____———;25;—: L

x(o) = 0

We have a duct with area increasing to the left. The throat of the duct

is located at x(o) = L, and the flow is from right to left. The coeffi-
clent b was chosen as 1, and L was taken as 2. Typical characteris-
tice of the zeroth-order solution for subsonic flow downstream of the _
throat are shown in figure (2.1). The characteristics B = constant are
essentlially straight at the left, that is, the reglon of large areas, and
have increasing curvature as they approach the throat, where they have a
vertical tangent. The characteristies o = constant are essentially

straight throughout the duct. The variations of particle and sonlc speed
and Mach number along the duct are shown in figure (2.2).

At this point it is of value to digress from the particular problem
at hand and to note sn important feature of the method of coordinate
perturbation that is implicit in the preceding development. In the case
under consideration, we find that « and B may, at the same time, be
considered as the characteristic parameters of a zeroth-order solution

and of an "exact" solution (in the example, the steady duct flow). That
is, the perturbation-series solution begins with the exact characteris-
tics of the underlying flow. The lines o = constant aend B = constant

are mapped by x(0) (a,B) and £(0) (a¢,8) onto the characteristics in the

x(0) t(o)-plane and by x(o,B) and +t(x,B) onto the characteristics in the
X,t- plane. Had it been possible to determine the solutions of the o
equations of higher order, these higher-order terms would not only have
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changed the distribution of the flow variables along the zeroth-order
characteristice in the physical plane but would also have changed the
characteristics themselves. That 18, the lines o = constant and

B = constant would no longer be mapped by x(o,p) and +(o,B) onto the
characteristics of the underlying flow in the x,t-plane but instead .
would be mapped onto the approximate characteristics of the perturbed
flow. 'In other words, the significance and the properties of the charac-
teristics are retained in the method of coordinate perturbation. This is
in marked contrast to the more usual perturbation theories in the physi-
cal plane, in which the characteristics of the perturbed flow do not ap-
pear explicitly. -

C. The “"Epsilon Duct” =

A way of avoiding the difficulties involved in obtaining the higher
order solutions for the preceding example presents itself when the duct
area variation iteelf i1s considered as being of the same order as the
"smallness" parameter €. In particular, the case AX/A = - € wvas

studied; such a duct shall be referred to as an "epsilon duect." Such a
choice amounts to requiring that the duct srea vary siowly, but places no
restriction on the over-all area variation (i.e., over a long stretch of
the duect). For this choice of area variation, equations (2.9) become

x, = (u+ c)ta,

o]
™
I
Py
c

- c)tB,

- cuct (2.36)
u, +-oc = euct;,

uB - ch = - euctB.

oeooe
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Substituting equations (2.7) into equations (2.38) and equating the coef-
ficients of like powers of € ylelds

k ™
K06 ; N 4 Myl
=O
k
xék)-= ;i; (u(k) - c(K))ték-x); k=0,1,2 ---
ué?) + Uc§9) = 0; uéo) - Ucéo) = 0;
el [ >(2.37)
S (k) (M (3-N)] L (e-1-9)
(o2 (o8 ;;; ;;; o
k-1 J
uék) - crcék) = - z 2 M), (-0 ték'l'J); k=1,2,3 -
Jj=0 | A=0 J
Typical sets of the approximate equations are: _
Zeroth order:
<{0) = (u(®) (000 )
0) _ (,(0) _ ,(0)y.(0)
Xé RO Yop l (2.38)

uép) + cc§9) =0,

0 (o)
ué ) - ccB = 0. y
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First order:

(s de4

X§l) = () C(0))1.,é1) + @)« c(l))t§0)> -
o) = (@) L @) 4 ) - @), > -
uil (1) - (0),(0)lo)
ug1>-acgl> (02,(0)(0). )
Second order:

w(2) - (@00) 4 (01 (2) (1), (D) () () c(z))téoﬁ
NONNROIROINO NN C RN G MG IO IO O )
RONONRONONSIRROROINGRONOR (.40

uéZ) i} c,céz) N ({00 4 (), (0)),€0) ] i

Third order:
ng’) - () . c(°))t§3) + 1) . c(l))tch) + (l2) c(Z))tgi) + (i3 4 c(s))th),

xés) = ({0 . c<°))t§5) £ @) c(l))th) + (uf2) . c<2))t§1) + (u(:'») - ccs))tém, o
2.41
uc(f) + vcé”) - c(o)u(o)%(‘z) s (00,0 c(1)‘1(0)),5‘9) + ((00,(2) | °<l)“(j_) . ccz)u("))tff),
uéﬁ) . ,cés) - - c(°)u(°)t§2) - (o001 c(1)11(0))1%1) - ({9,(2), c(1),41) . c(a)u(o))téo).

The interesting thing about these equations is that the right hand
sldes of the equations resulting from the compatabilility conditions
(i.e., the third and fourth equations of each set) involve functions of
the lower order solutions only; that is, if the latter are known, of the
independent variebles. Thus, in principle, these equations can always be
solved by quadratures. The equations resulting from the characteristic
conditions (i.e., the first two equations of each set) are also always
linear, and the coefficient of the derivative of the“k-th order approxi-
mation of t is always the sum or difference of the zeroth-order solution

for u and c. - -

-



5239

CE-3

NACA T™M 1439 17

The form of the equations suggests that it would be particulsrly
simple to obtain solutions for problems where the 1nitial conditions are
specified on a line x = constant; for in such cases the zeroth-order
solutions for u &and ¢ would be constants. This renders the solutions
for the physical coordinates relatively simple for all orders.

To demonstrate such a solution, and in order to be able to check the
values obtelned against a known exact solution, it was decided to solve
the problem wherein it 1s specified that on the section x = 0 the values
of the particle and sonic speed are given by the constants U and C,
respectively (i.e., a time-independent flow). The constants U and C
are subject to the condition

U2 + oC2 = o + 1, (2.42)

that is, the Bernoulll equation. The solution generated under these con-
ditions should be the steady-state duct flow.

Equations (2.38) to (2.41) are to be solved, therefore, under the
boundary conditions given above. The boundary conditions are to be
satisfled in the following manner: Contrary to the choice in the previocus
gsection, now the line x = 0 i1is to be mapped on o = B such that
a =B =+t. Thus, we choose N _

x(n)(m,m) = x(n)(B,B) =0 for n = 0;
) (a,a) = a, £(0)(g,p) = 8, (2.43)
t(n)(a,,cc) = t(n)(B,B) =0 for n > 0;
and
ul®)(a,a) = ul®)(g,p) = 1,
(@ (a,a) = (0)(p,p) = c, (2.44)

u(n)(@:a) = u(n)(B,B) = c(n)(m,m) = c(n)(B,B) =0 for n> 0.

The second pair of the zeroth-order set (egs. (2.38)) gives for the
particle and sonlic velocities simply

u(o) = U; c(o) = C. -
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Inserting these in the equations for the characteristips and integrating
yields ' '

x0) . (v + ¢)5(0)

1]

F(8),

x0) = (u - ¢)s(0)

% (a).
Applying the boundary conditions, we obtain

f(B) = - (U"‘ C)B:

@(a) = - (U - Ca.
Therefore,
2 2
(o) _ U -6
X —_(G’-B) ZC )
(o) _ Uu+C _ U-C
B0 =B ¢ @5 -

The solutions of the higher order sets are cbtained in a similar manner.
The solutions up to the third order are - =

w0 _ g, w
el &,
ICOR Y T (oc? - ), ’ (2.458)
) = (0 - 8)? T (o0? - suP);
A
(0) _ ¢, N\
A g
o(2) o (q . p)2 ZU?, b (2.45D)
(3 = (@ - ) 2—4"% (2ac? - UZ)U

6225
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\
O (oo g L
(1) _ a2z 8 [z o2
x (e - B) - [c (20 + 1) + ],
2 > (2.45¢)
X(2) = - (o - 22200 [(UCZCZZUZ) + (o + l)cﬂ ,
«3) o (- ) 2 [(K-N)g+ (K+Nz,; )
t(o) - B Uzé- C _ “Uzc-: c,
\
£ 2L (e - 812 L (o0 + UR),
80C
(2) 3 - > (2.453)
t = - (a0 - B) —53 (oC? + UB)(oC? + ZUZ):
480°C
£3) oL (-8 k- ) J
where,
K-N= —3—3 (oC2 + U2)(oC? + 6U2) (2.46).
480°C i
K+N= 160202 (02412 ) (20°C2412) + 4802 l:c(c+4)02 - (50+2)U2] (2.47)

As anticipated, the solutions for the flow variables are independent
of the time as is seen from the fact that u, c, ahd x are functions of
(0 - B) &alone, and the possibility of the elimination of (o - B) from
these equations makes u and c¢ functions of .x alone. ' o

Although attempts were made, it was not possible to prove analytically
the convergence of the perturbation series. In any case, however, it
would have been necessary to resort to numerical examples in order to in-
vestigate the accuracy of the representation in the various regiomns of x.
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As an example, the duct € = 0.1, L = 6 was chosen; that is, the duet
area varlation is given by A = exp|{-0.1(x - 86)|. A plot of the duct area

variation is given in figure (2.3). The cruss-sectional ares varies in
the ratio of approximately 1.81:1 from initial Iine (x = O) to throat.

This quet wes first investigated for the case of subsonic flow down-
stream of the throat with o = 1 (v = 3). With the flow coming from the
right, we have, from the steady-flow equations (2.14) and (2.15), on
x= 0

U= -0.40504; C = 1.35497. -
Inserting these values in equations (2.45), we obtailn the series solution

0.40504 + 0.02744(a - B) + 0.00085(a - s)z + 0.00001(o - 3)5,\

-u =
¢ = 1.35497 - 0.00820(a - B) - 0.00056(a - s)z - 0.00002(a - 5)3,
x = 0.61695(a - B) - 0.00633(a - 5)2 - 0.00029(a - B)3 -

0.00001(a - )%, - (240
t-=0.350538 + 0.649460 + 0.00552(c - B)Z + 0.00015(c - 8)° +

0.000003(e, - B)%. - J

The second- and third-order solutions are shown in figures (2.4) and
(2.5) by the data symbols. The exact steady duct flow is glven by the
solid curves. As can be seen in figure (2.4), the flow velocity is very
well represented by the second-order solution up to about x = 4. The
third-order sclution extends the accurate representation up to x = 5.5.
Only in the immediate viclnity of the throat (x = 8) does the departure
from the exact solution become relatively large. The ponlc speed 1s also
well represented by the approximate solutions, as seen in figure (2.5).
Again, large departures from the exact solution occur only near the throat.

The variation of the space coordinate x with the quantity (a - B)
is shown in figure (2.6). Proceeding from the second-. to the third-order
solution decresses the variation of x with (o - B) for the larger values
of this quantity. That is, the higher degree terms of (o - B) cause the
x,(a ~ B)-relation to become more horizontal for valued of the argument
above 7. For values of (a - B) less than 7, the second- and third-order
solutions give the same value for x. It may be recalled that values of
(e - B) which yield values of x greater than 6 are not pertinent to the
solution. : ' '

, 6228
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A typical B = constant curve in the x,t-plane of the third-order

solution is shown in figure (2.7) along with the exact characteristic. The B

case shown in that of B = 0, and the points indicated by the data symbols
are obtained by setting B = O in the last two of equations (2.48) and
eliminating «. The exact characteristic 1s obtailned by setting b = €

in equation (2.27) and using the appropriate value of L. It is evident
that the approximation to the actual characteristic is very good up to the
vieinity of the throat, in which reglon the departures become large.

D. Factors Affecting Convergence and Accuracy

From the preceding example, it appears that the spproximate solution
does converge to the duct flow solution. There are a number of factors
that mey affect the nature and rapidity of the convergence. Among these
are the magnitude of €, the over-all area ratio of the duct, the loca-
tion of the initial line on which U and C are speclified, and whether
the flow is subsonic or supersonic.

1. Effect of €. - The first step in this investigation was to deter-
mine the effect of the magnitude of € on the solutions. For thls pur-
pose a set of spproximate duct flow solutions were computed for different

values of €. The values of duct length were so chosen that the product

€I, was constant. For the type of duct considered, that is,
A = exp [;e(x - IJ], this results in a set of ducte of the same over-all

area ratio between x =0 and x =1 but with different rates of change
of area. These examples were computed for the case of subsonic flow down-
stream of the throat with o =5 (v = 7/5). The values of the parameters
€ and L used are:

€ L
0.1} 6.0
0.2| 3.0
0.4] 1.5

For these cases we have, from the steady-flow equations, the boundary
conditions on x = O3

U = -0.36841; C = 1.08298.
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For these values the approximate solution is given by

~u = 0.36841 + €(0.19949) (x - B) + €2(0.05276)(a - B)Z +
€3(0.00862) (o - B)3,

c = 1.08298 - €(0.01357)(a - B) - 62(0.00735)(a - 3)2 - %2.49)
¢3(0.00262)(a - 8)°,

x = 0.47883(q - B) - €(0.03772)(a - B)% - €2(0.01376)(a - 5)5—;

€3(0.00038) (« - B)%.

The results of the computations for these examples are shown in fig-
ures (2.8) to (2.10) as plots of u and ¢ 88 functlons of x. For all
the values of €, the spproximate solutlions converge on the exact solu-
tion. The accuracy of the repregentation is quite good, the third-order
solutlon being quite accurate for about 80 percent of the duct lengtih.
Moreover, comparison of the three figures shows that the accuracy of the
representation at corresponding points (i.e., equal area ratios) in the
ducts is the same for all values of €. This leads to the conclusion
that the accuracy of the approximate solution is not & function of €
alone.- = =

2. Effect of over-all area ratio. - The over-zll area ratio of an
"epsilon duct” is a function of the product L. To investigate the ef-
fect of the over-all area ratio on the solutions, two additlional examples
were computed for an € of 0.2. For subsonic flow the values of L
gelected and the corresponding initial values of the flow varisbles on
x=0 are:

L U c

5.0 | -0.23889 | 1.09022
7.5 -0,14270 | 1.09365
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The solution for L =5 is given by

g -u = 0.23889 + €(0.13022)(a - B) + €2(0.03515)(a - B)2 +

€3(0.00614)(a - B)>,

Q
Il

€3(0.00113)(x - B)>,

L]
Il

€5(0.00157) (a - B)%.

-For L= 7.5 +the solution is

-u

(¢]
Il

"
!

€3(0.00382) (« - B)>,

€3(0.00041) (a0 - B)3,

€3(0.00056) (a - B)%.

0.55752(c - B) - €(0.00561)(a - B)Z -

1.09022 - €(0.00571)(c - B) - e2(0.005ll)(a - )2 -

0.14270 + €(0.07803)(a - B) + €2{0.02126)(a - B)2 +

1.09365 - €(0.00204)(a - B) - €2(0.00111)(a - B)2 -

€2(0.00205)(a - B)° -

0.51894(a - ) - €(0.01576)(a - B)2 - €2(0.00575)(a - B)° -
y,

‘23

L(z.so)—

»(2.51)

y

The results of these computations are shown in Pigures (2.11) and
(2.12), where the particle and sonic velocities are plotted as functions
of x. Again, the approximate solutions converge on the exact solution.
Comparison of these solutions as well as that shown in figure (2.9), which
is for L =3 and € = 0.2, indicates that the greater the length of the
duct (i.e., the over-all area ratio from x= 0 to x = L), the smaller
is the value of x/L at which a given departure from the exsct solution
occurs. For example, the coordinate X at which the third-order solution
for u has an error of 0.0l is given in the followling table for the three

ducts considered:

L X |Z/L AO/AE (uglexact
- 3.0 2.64]10.88]( 1.70 0.760
5.0 3.80 | 0.76} 2.14 0.573
-~ 7.5 4.90(0.65| 2.66 0.405
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Although & given error in u occurs at smaller values of x/I as the
duct length increases, it should be noted that the ratio of the ares at
x= 0 to that at X 1increases as the duct length increases. A similar
statement holds when the comparison is made on the basis of a glwven per-
centage error in u.

For a given value of €, the value of L determines not only the
over-all area ratio of the duct but also the values of the flow varlables
at x = 0, slnce the steady flow 1s sonlc at' x = L. The larger the value
of L, the smaller is the value of U on x = 0. A concomitant of small
values of U 18 a decreased rate of change of the flow variables with x
(or esrea ratio) in the vieinity of x = 0 (cf. figs. (2.9) and (2.12)).

It is this latter property of subsonic flow that results in the accurate
representation of the flow over larger area ratlos for the "epsilon ducts”
with larger L.

3. Effect of the locatlon of the initial line. - To this point, only
the case wherein the initigl conditions bave been specified at the largest
area of the duct, that 1s, at x = 0, has been considered. If the initial
conditlons are speclflied at the throat, that is, at ~x = L, where the
rates of change of the flow variables with distance are greatest, the
effect of this factor can be observed. For this purpose, equations (2.36)
were solved with the conditions especified at x = L. The solutions for
this case are the same as those given by equations (2.45) with the ex-
ception of the zeroth-~order term for x. This is replaced by

0 = 1 - (a - B) Uz—zaﬁ (2.52)

For this case we have at the boundary x = L the initial wvelues of
U= -1, € = 1. The steady-flow solution for ¢ = 5 "is represented by
the following equations: :

—u =1+ e(0.5)(a - B) + €2(0.1)(a - B)Z, )
e 1 - €(0.1)(a - B) - €2(0.05)(a - B)Z - €3(0.015)(x -~ B)>, | (2.53)
x =1 - €0.3)(a - B)2 - €2(0.11)(a - B)° -

€3(0.02075)(a - B)%. S D

These equations represent the supersonic branch as well as the sub-
sonic branch. To obtain the subsonic branch, the srgument of the series

< 1. An example of the sub-

(o - B) must be taken as negative to mske I%

sonlc case was computed with € = 0.1 and L = 6, and the results are
shown in figure (2.13). The representations of the particle and sonic

[-Ja2a)
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veloclties gilven by the approximate solutions are seen to alternate above
and below the exact values. The approximate solution does, however, ap-
pear to be converging to the exact solution as higher order terms are
used. In the neighborhood of the throat the approximate solutions are
good representations of the flow, desplie the rapld variation of the flow
parameters with x. Although the solutions do appear to converge to the
exact solution, the convergence is not as rapid as that obtained for the
corresponding case with conditions specified at x = 0 (fig. 2.8). This
is especlally noticeable for the sonic speed (fig. 2.13b), where the
second-order solution reaches & maximum et sbout x = 4 and then de-
creases with increasing x.

Some insight into the reasons for this behavior can be obtalned from
figure (2.14), which shows the variation of x as a function of (o - B)
for this example. The second-order representation of x has a minimum
in the vicinity of (¢ - B) = -17, whereas the third-order representation
exhibits no such behavior up to this value of the argument. This change
in the nature of the relationship between x and (o - B) is & result of
the fact that, for negative values of tThe argument, the expression for x
is in effect an alternating series. The coefficlents of the series are
of sufficlent megnitude to have large effects on the representation of =x
for the larger values of the srgument. It should be noted that for nega-~
tive values of the argument the series for u eand c¢ also have alter-
nating signs.

Thus, for subsonic flow, it can be concluded that specifying the
initial conditions &t x = L, where the rates of change of the flow varia-
bles with x are high, results in less rapid convergence of the solutions
than for the corresponding case where -fhe initlial conditiqg§ ere glven on
x = 0. v

4. Bupersonic flow. - Thus far, only subsonic flows have been con-
sidered. We now examine the character of the perturbation solutions for
supersonic flow. First, consider the case with initial conditions given
at the throat. For positive values of (o - B), equations (2.53) yield the
supersonic branch of the duct flow. In this case the serles do not have )
alternating signs. The results for € = 0.1 and L= 6 are shown in
figure (2.15). In this case the approximations converge quite rapidly to
the exact solution, and the accuracy of the third-order solution 1s quite
good for the entire length of the duct. Whereas In the subsonic case
specified on x = L convergence of the represéntation of ¢ was poorer -

than that of u, in the supersonlc case the opposite is true. 1In fact, the

third-order representation of c¢ 1s excellent for the entire length con-
sidered. One possible reason for the fact that the representation of u

does not appear to be as accurate as that for ¢ 1is that the coefficient
of the term of third degree in (o ~ B) in the equation for u is zero ~

in this csase. .



26 - NACA TM 1439

There remains one further case to examine. This 18 supersonic flow
with conditlons specified at x = 0. For this case we have, for the same
duct as in the last two examples, on x= 0, U= -1.67289 and \
C = 0.80019. For these values the flow 18 represented by

6228

~u = 1.67289 + €(0.66931)(a - B) + €2(0.01685)(x - B)2 - ~
€3(0.06018)(a - B)3,
¢ = 0.80019 - €(0.27986)(a - B) - €2(0.11197)(a - B)Z -
€3(0.01681)(a - 8)7, [ (2:54)
x = -1.34859(a- B) - €(1.07539)(a - B)2 - €2(0.43969)(x - g)3 -
63(0.16413)(m - )t | ,)
For values of x greater than zero, (a - B) must be taken as nega-
tive. Thils agaein leads to &8 serles with alternating signs for the rep- N

resentation of x. The resulis of the evaluation of equations (2.54) are
gshown in figure (2.16). For this case, as for subsonic flow specified at
x = L, the approximate solutions of increasing order alternate above and
below the exact solution. Agalin, the third-order sclution is a good rep- -
regentation of the flow variables over most of the duct-length. Depar-
tures of appreclable magnitude for the third-order solution occur in the
vicinity of x = 5.3. It is to be noted that both the first- and third-
order solutions for the flow variables fold back on themselves, the former
at about x = 4.2 and the latter at about x = 5.5. This is again the
result of the nature of the x, (a - B)-relation shown in figure (2.17).
The first-order representation reaches a maximum of 4.2 at (o - B) = -6.25,
and the third-order representation has a maximum of 5.55 at (o - B) =

-3.0. These maxima result from the strong influence of the term of
highest degree of (a - B) in each case. These are the even-powered terms
that, for negative velues of the argument, serve to reduce the rate of
change of x with (o ~ B) and thus produce the maxima.

5. Recapitulation. - From the preceding examination of the factors
affecting the convergence and accuracy of the perturbation-series solution
for steady duct flow, i1t was estsblished that for both supersonic and
subsonic flows the series converge to the exact solution. The extent of
accurate representation of the flow depends on the over-all area ratio of
the channel and thus on the values of the flow vaeriables on the initial
line. For subsonic flow the extent of accurate representation was greatest— —
when the initial values were given at the large end of the duct, that is,
at x = O. For supersonic flow the opposite was true; that is, the extent
of accurate representation was greatest when the inltial conditions were
glven at the throat. However, the differences caused by the change of the

date carrier in the supersonic case are not as great as for subsonic flow. .
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In both supersonic and subsonlc flow the poorer representations occur
when negative values of the argument of the series must be employed.

It should be noted that the particular area function chosen, that
is, the "epsilon duect," is not the only one for which such solutions are
possible. The particular case used should be viewed as but one of a fam-
11y of area functions that should be amenasble to the method used. This

family can be represented by A = et€P(%) yhere P(x) is a polynomial in
X. For such area functions similar results should be obtainable.

E. Unsteady Flow

To this point, the perturbation-series solution has been investigated
only for the case of constant conditions on the initial line. Such ini-
tial conditions were chosen so that the solutions obitalned could be esasily
compared with a known exact solution, the steady duct flow. We now turn
to the case of unsteady quasi-one-dimensional flow. For perturbsation-
series solutions for unsteady flows in a duct, the specification of
boundary conditions becomes complex, and more detelled consideration must
be given to the nature of the initial dsta than was the case for steady
flow.

1. Boundary conditions. - In the usual perturbation problems, such
as those for steady two-dimenslonal flow and one-dimenslional unsieady
flow, there is an underlying uniform state or flow thet is constant both
in space and time. For example, in two-dimenslonal steady flow the under-
lying uniform flow ls frequently chosen as a constant value of u, as in-
dicated in equation (2.1). For one-dimensional wave propagation problems,
the underlying flow is elther a constant steady flow or a state of rest.
In such cases the physical interpretation of & given set of boundary data
is qulte straightfqorward and no great difficulties arise.

In contrast to these cases, the underlying flow 1n & quasi-one-
dimensional problem is uniform, in the true sense of the word, only for
one perticular circumstance, that is, a state of rest. For all other
cases the underlylng "uniform" state is a steady duct flow in which, of
course, the flow variables are not constant in space. For such problems
an implicit boundary conditlon ie then: Along some line +t = constant
in the x,t-plane, a steady duct flow must exist. Alternatively, one could
specify that, along a certasin characteristic which separates the reglons
of steady and unsteady flow (corresponding to the "rest" characteristic
of a disturbance advancing into & gas at rest), the steady duct flow rela-
tion holds. This requirement introduces some difficulties in the specifi-
cation of initial data for the solution of problems by the perturbation
method under consideration. e
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Consider two Intersecting noncharacteristic ares J and K in the
x,t-plane enclosing a region R (see sketch).

t 4

622s

As developed in section 28 of reference 6, if a direction is assigned
to each of the two families of characteristics (in the sketch the direc-
tion of increasing time is chosen), it can happen that the two character-
isties issulng from any point on K enter R, whereas only one charsc-
teristic from any pointon J enters R. An arc such ag K 18 called
space-like, and the arc J 1s called time-like. In the reference cited
ebove, it 1s established that, for problems 1n which the boundary condi- .
tions are specilified on both time-like and space-like arcs, itwo data on
the space-like arc and one datum on the time-like-arc determine an unlque
solution in the region between the arecs. In such problems, a relation.
exlsts between the two dependent verlebles on the tilme-like arc. '

The form tsken by the differential equations for the perturbation
problem (egs. (2.37)) is such that-it is most convenient to specify the
initial data on a time-like arc. This was the case for the steady-flow
examples presented earlier in this section. In that case it was reasonsa-
ble to specify both dependent variables on the time-like arc, x= 0 or
x = L, because the relation between the dependent varisbles was known and,
further, they were constent. In the more gerieral case . of an unstesady
disturbance of a steady flow, one cannot arbitrarily specify two datsa on
a time-llke arc as noted above. If such a specification were made, the
region S, bounded by the characteristics 1lssuing from point O, would
contain an unsteady flow. This would imply that a disturbance- originating
atpoint O would influence the flow fileld to the right of O at an
earlier time, a physically untenable condition. On the other hand, if it
were attempted to specify a steady flow on the boundling OC+ characteris-
tic (the "rest" characteristic) issuing from point O and a single datum
on the time-like arc, the problem would become almost hopelessly complex
because the initial data along the "rest" characteristic would have to be ~
given by equations such as (2.30) to (2.33).

There are, however, two ways of avolding the difficulties noted sbove.
The first is to coneider the problem whereln two data are arbitrerily

LY
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specified on g time~like arc from & different viewpoint. The second is to
seek the relstion between the dependent varigbles on the time-like arc
that will not produce an unsteady flow below the "rest" characteristic.

2. The "inverse" problem. - We consider first the case of an arbitrary
disturbance of one or both of the dependent varisbles specified on & time-
like arc. Such a problem can be viewed in the following manner: We glve
on a time-like arc, say on the line x = x5, & certain distribution of u
and c, one or both functions of time. We then ask what occurred at
another station at a previous time to cause the flow at x = xp *To vary

in the manner prescribed. For the flow to have been a steady duct flow
prior to some time +tp on the boundary, it is necessary merely to specify
that for all *% f,to the values of u and c¢ on the boundary are to be
constant and satisfy the Bernoulli equation. This siltuation ig shown in
the sketch. '

tf = 2() £(t) = U
such that for t &£ to
c = g(t) g(t) =
C+
1
=)
P'\
'
~1
C-
X

Under these condltions there will be a steady duct £low below the C-
characteristic through (xo, to). A physical example of such a problem
would be thet of inquiring how to vary the entrance conditions into a duect
so that a given flow variation at the exit might result. .

Such problems are referred to as "inverse" problems In the sequel.
It was found that the solution of such problems could be written in a
quite general fashion. An example of such a solution follows.

Consider the case of an "epsilon duct" originally containing a steady
Plow. ILet a disturbance in sonic speed of order of magnitude € start
at a specified time at a given cross section of the duct. For convenience
let the cross section be that at x = 0 and let the disturbance begin at
t = 0 at this cross section. The boundary conditions under which equa-
tions (2.37) are to be solved are, therefore, on- x = O,

u=70U
’ (2.55)

e =C + ef(t),
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where -

£(t) = O, for t € 03
(2.56)
U2 + c:rC2 =g+ 1.

These boundary conditions are to be satisfied in the following man-
ner: The line x = 0 1is to be mapped on « = B such that a= B =1,
that is, according to equatlons (2.43) and

o
w{%(q,a) = ul®)(g,p) = U, A
n
1@ (g,a) = uP)(p,8) =0,  n>0;
o(®)(a,a) = c(0)(p,8) = ¢, 3 (2.57)

c(l)(or,,cx,) = f(a), c(l)(B,B) = £(B),

c(n)(a,,oc) = c(n)(B,B) = 0, n>1. )

(Note the peculiar way in which the boundary conditions for this probiem
can be accommodated in the € -scheme. )

The solutions, under these conditions, up to second order are:

u(o) = U, I — w
a1 2 ua - ) + uM2(e) - vfMe(a),

o£2) . U§2)(a - p)% U£2)(m - )e(a) - Uéz)(Ob - B)ep) - & (2.58a)

U§=2) fﬁ £(7)ar; ‘ )

c(O) = C, A

I of) £(p) + c{Me(a),

>(2.58b)
8) . Ciz)(m _B)% 4 céz) (o - B)E(B) + c§2)(m - p)E(a) +

(2) pP .
| C, ‘/O: f£(r)dr; | ) )

-~
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x(0) = - x{0)(o - ), )

1) = - (e - ) + 2P (a - B)2(8) + XM (a - B)E(a) +

xil) “[B £(t)dr,

(@) _ (8o - 5)% + xP)a - )2e(B) + x{B)(a - B)P2(a) +

:
%) ‘[B (7 - p)e(x)ar + x$2) v[ (o - T)e(e)at +

X

B
Xéz)f(B) [B £(t)dr + X,gz)f(a,) f £(t)ar +

ng) fﬁ[f(fa 2 4. ng)(m ) B)[f(ﬁﬂ 2
%2 (q - B)E‘( ] ) (o - B)e(a)e();

51 = 20 _ £{0),

o e - )2 4 1 (e - p)e(e) + 2 a - Be(a) +

Til) “[B f£(r)dr,

6(2) = -2l (q - )3 4 2B (a - £)P2(p) + 2{F) (o - B)22(a) +

p :
o(?) [ e o{?) FACERECEE

(Z)f(ﬁ)[ f('r)d'r+T(2)f(a.)f £(r)ar +

o{?) VA Eh] av + 7§ - p)20s)]? +

T%)(a_- o)£(a)]? + 2{E)(a - pe(ele(s). )

J
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»(2.58¢)

>(2.588)
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In obtaining these solutions, the following l1dentity has been used:

f f f“’)dy - Ay = T_Tf r-8)2e(e)ae.  (2.59)

n

The coefficients appearing in equations (2.58) are functions of U,
C, and o and are listed below:

(1) _uc Y -
R R
Uél) =_g_ Uéz) _(u+ C%c(:U - aC)

(2.60a)
Uél) -l ng) .- o)u s o)
+2) _g tly )
(1) 2 .
c; ' = -EU; cJ(_Z) = %_ )
eft <1 c{¥ - L (v o2

(1) (2) > (2.80b)

o3 = 02 =% (u+ 0)%
o(8) _ B+ y

~
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0
) _

X£l) =

G

L=

N

x$2) -
Xiz) =

ng) =

xéz)

x{2) _

7

x(?)

Xl =

=c;;2:L (U? + c?)

_ U [(Uz + oc%)2 + (o + :L)cz]

= gzigl (U - c)[?sc +1)C - (o + 3)@]

1439 33

U2 - 2 )

2C
% [(20 +1)C% + UZ]

a +21 (U _ C)Z
8C

g+ 1

(U + c)2
s

4C

240C 002

{lo+1) (U - ¢) |U3(5U + C) + oC2(7U - éﬂ

640C3

ﬁE_i_%l{EU +0) [éz(su - ¢) + oC2(7U + 63}
640C

-—-l——{}(c+l)02(U+C)2 + U2[§2(4c-3)(c+1) + 8UC(o+1) +'U2(5a-%i} ?

320C5

_1__{002 l:(c:r+l)c2 - 8UC + 7(c+l)U2] +

320C3
2| (50-3)U% + 4(o+1)UC - (a+1)cﬂ}
-;—Zs—l(u-c) 3(c - 1)U + (cr+3)§|
i =L (U + ¢)(3U + C)

32C
_:?;'[(c+l)02+(6-7)U2+2(c+1)Ua

-:—égs—l (U+C)E30+1)C+ (c+3)ﬂ

(U + 1%2 (CZ _ UZ)
C

16
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(o) _Uu+¢c 3
2C
Téo) _ U26 c
(1) 2 2
” 02 (U2 + oCe)

(1) _o+1
T = ——= (U + C)
3 ac2

T(l)_c-lﬂ_
- 4 CZ

U
T§-2) = Ze:z—cg (Uz + D’Cz)(ZUz + GCZ)

Téz) =2+l [UCZ(C - 3U) + UA(3C - SU;J

840C"

ng) g+l E:cz(c + 3U) + UR(3C + 5U]

64003

T‘gz) a 52J‘;C3 {ccz[(c -3) - U(o’+l] - Uz[(70+3)0 + (50- 3)]}

(2) 320'C {cc [(c 3)C + 3(c+1)ta + Uz[(SU 3)U - (56+l)]}
T§2)=- cr'|‘:|'[:”>(cx-l)U+ (cr+3)]

320°

2
ng) = - ———"32(‘:3 (30 + C)
Téz) = - i;;géz)—l [_(a - U + 2(0 + 1)5_‘
ng)=_ (c.+1)(g+§) (v - c)

64C

Tig)— - (°+:iég+3) (U + C) _
T(2)=— °+%2U_

16C - o=
J

> (2.804)

6225
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It is to be noted that in equations (2.58) the terms independent of the
disturbance function are exactly those given by equations (2.45) for the
steady-flow solution. Thus, the solution for the unsteady flow also
generates the underlying steady duct flow below the "rest"™ characteristic.

To 1llustrate the character of the solution, an example was computed
for a duct with an initial exit Mach number of 0.35 (l1.e., on x = 0).
For this Mach number and for o =5 (v = 7/5) with the flow coming from
the right, we have U = -0.37879 and C = 1.08226. For the disturbance,
a "finlte ramp" function

Bt for 0Lt 8
£f(t) =4 B t >3 (2.61)
0 t< 0

was chosen with B = 0.0086905 and © = 4.0. For an € of 0.1, this
represents gbout a 1/5 percent disturbance 1n sonic speed on the boundary
x = 0 at the conclusion of the "ramp." Equations (2.58) were programmed
for computation by an IBM type-650 digital computer by using the Bell
Interpretive System (ref. 9). The program was set up so that the varia-
tions of the flow variables on lines of comstant x could be calculated.
The values of the coefficients of equations (2.58) (cf. eqs. (2.60)) for
the initial values given above are listed in table (2.1). The results of
the computations are shown in figures (2.18) and (2.19) for x = 0.5 and
1.0, respectively. In both figures the region between o= 0 and B =0
is seen to be an unsteady flow field, as expected from the nature of the
initial conditions. In this region both u and ¢ wvary. In the region
bounded by @ =4 and B = O, the particle veloecity is essentially con-
stant; thls reflects the constant value of u between these characteris-
tics on x = 0. In this reglon the rate of change of sonic speed With
time increases above that below B = O. In the region bounded by o = 4
end B = 4, the magnitude of the particle velocity decreases, and the
sonic speed continues to increase until the B = 4 characteristic is
reached, at which time a new steady state is achieved.

In both figures the Ffirst- and second-order solutions are quite
similar in shape. The principal difference is in the level of the solu-
tion which, however, reflects principally the accuracy of the representa-
tion of the underlying steady flow. The changes in level in going from

" the first- to the second-order solution is greater at x =1 +than at
x = 0.5, as expected. It is obvious also that the time interval during

which the particle velocity is almost constant is shorter at x = 1 than
at x = 0.5, which is to be expected from the triangular nature of the
region between B =0 and o = 4 (shown in the inset in fig. (2.18)).
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In order to compare the perturbation-serles solution with an exact
solution, this problem was solved by the method of charscteristice with
a finite difference technique. Consider a noncharacteristic are i an
two points on this arc, 3 and (J+l) (see sketch). At these :

+}

1,3+2
1,3+ =141, 441

i+1 -
194 »d

points the dependent variables u and c¢ are known. To determine the
location of point (i+1,J) and the values of flow varisbles st thig point;
equations (2.36) are written as difference equations. The resulting
equeatlions are:

N

X341,5 ~ ¥1,5 = (4 gt ey (g 5 -ty ),
X341,9 = F, 541 = (B4 341 - o1, 500) (bgpa 5 - b4, 342) 5

Y1,3%1,3

Cgna,g =, g) + olenn,g - on,y) =€ 250

(x341,5 - 1,900

(ui+l,,j - u1,3+1) - °(°i+1,,j - °1,3+1) =

U, 341%4, 541
Yi,541 T G4, 541

- €

(x441,5 - X1, 540)- J

(2.62)

The equations for x and t are solved firs®t; this ylelds the coordinates
of the point (i+1,j). Using these values, the last two equations yield

the values of flow variables at this point. This is a first approximation
to the result. Improved accuracy results when average values, rather than
initial values, are used for the slopes of the characteristics appearing

in the difference equations. For this purpose, average values of the flow
parameters that appear in the expressions for these slopes are computed _
by using the values of Uiyy,; end i1, 3 obtained from the preceding

6%2S
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approximation. These average values are designated by barred symbols and
are gilven by:

- 21
ui 3 <32 [ui,,j * ui+l,,£|’
1 (2.83a)
°1,1 =2 [ci,.j * ci+1,]:
- _ 1
Yi,041 532 Eli,jﬂ * u1+1,ﬂ s
(2.63b)

- 1
Ci, 41 T 2 Ei,,j+l * °i+1,£|'

Substituting these values into thelr proper positions in equations (2.62)
yilelds the following equations for the second epproximstion of the loca-
tion of point (i+l,J) and the values of the flow varisbles at this point:

\
Xip1,3 = X1,3 = (o gtey 206, 5 -ty 5)
Xig1,5 " Fa,34L (‘_11,3+1 IR IS HE R R
1 - 1 - = Tli;jzi)c.j 1 -
(ig,5 - vy, ¥ olegy y-eq,5) =€ . . +o. o) i, %1, 5) \
i,J i,d
(uj'.+l,,j - ui,,j+l) - Or(cf'L+J.,j - ci,,j+l) =
(U | 34101, 341)
- € (_ 2 _’ ) (xi'i'l,j - Xi’J_‘_l).
Ui, 3+l - C1,5+1 7
(2.64)

This iteration procedure is repeated until the desired accuracy is ob-
tained; that is, until the difference between the values of the flow varla-
bles for successive lterations is sufficiently small.
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These equatlons were also programmed for solution on the digital
computer. The characteristic net for the problem isg. shown in figure
(2.20). The variations of the flow variables at constant values of x
were obtained by linear interpolation between the values at the net points
and are shown as the dasta symbols on figures (2.18) and (2.19). In both
the figures the method-of-characteristics solution is in excellent agree-
ment with the second-order perturbation-series solution. The differences
are quite small and are slightly greater at x = 1..than at x = 0.5.
From this, the perturbation-series solution 1s concluded to glve an accu-
rate representation of the unsteady flow.

To compute the series solution (both first- and second-order) at a
glven value of x requilred sbout 2.5 minutes of machine time. The solu-
tion of this same problem by the method of characteristics, using the same
computing machine, took 12 times as long in machine fime alone. The ratio
of machine times will increase as the magnitude of X increases, because
of the nature of the method-of-characterigtics solution. 'To the machine
time must be added that required to plot the characteristic net and to
perform the necessary interpolations. The advantage of the perturbation
solution from the computational point of view is quite marked. Further
comparisons of this nature wlll be made in section IV.

3. The "simple-wave-type" disturbance. - In the preceding paragraphs
the solution for an unsteady flow was obtalned with both dependent varla-
bles arbitrarily specified on a time-like arc. As expected, this led to
a solution with an unsteady flow below what normally might be called the
"rest" charascteristic. As noted earlier In thig section, in order to ob-
tain solutions wilth steady flow below the "rest" characteristlc, only one
datum can be arbitrsrily specified on a time-like aré. That 1s, there is
a relation between the dependent variables on such a boundary. It was
sttempted to determine whether a general u,c~relation on such time-like
arcs could be derived which would permit specification of these varisbles
on the boundary and still produce solutions with a steady duct flow below
the "rest" characteristic. Unfortunately no such relation could be es-
teblished analytically. It was therefore declded to Investigate some
simple u,c-relations to see whether the desired result could be approxi-
mated. Taking a clue from the nature of the zeroth-order equations, which
are the same as those for one-dimensional flow, it was decided to investil-
gate a disturbance in which the Rlemann varlable Q = u - oc remained
constant on the boundary. One-dimensional flows in which a Riemann varis-
ble 1s constant throughout the flow field are calléed sgimple waves. Such
flows are characterized by the fact that they exist adjacent to a region
of constant state. Because of the nature of the u,c-relation, such
disturbances shall herein be called "simple-wave-type" disturbances.

For such "simple-wave-type" disturbances in an "epsilon duct” the
problem may be stated as follows: Given a steady duc? flow with flow
varisbles U &and C at a glven cross gection. Let there be a disturbance

C omArAa
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in the flow at this section, commencing at a specified time, of such nature
that the parameter Q = u - gc is constant on the boundary. Determine
the ensuing flow in the duct. ) _ " -

The boundery conditions for the problem are then (choosing x= 0 _
as the cross gection and t = O as the beginning of the disturbance for
convenience), on x = 0, —

u=U+ e £(t),

(2.65)
¢ =C+ e £(t),
where
£(t) =0 for t< 0,
U2 + ch2 =0 + 1. (2-66)

The boundery conditlons are to be satisfied as follows: The line
Xx =0 is to be mepped on « = B such that o« = B = t, that is, according
to equations (2.43) and P

~
u(o)(m,m) = u(o)(B,B) = U,

w(e,0) = o £(a), u1(p,p) = o 2(p),
u® (g,q) = u®)(p,8) = o, n > 1;

o0 (a,q) = c(p,8) = c, > e
eMaa) = £a), <M(p,8) - 2(8),

c(n)(oc,a.) = c(n)(B,B) = 0, n> 1.

For these boundery conditions we see that on x = O we always have

Q=u-oge=T - oG, (2.68)
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that 1s, a constant value of one of the Riemann variables on the boundsry.

For these boundary conditions the soluticns up to second order are:

u(o) = U,

u(l) - U&l)(m - B) + Uél)f(ﬁ):

(2.692a)
B
L CRD R IR L ORI Sl AR O
c(O) =C, - ™~
(1) _ o1y, . (1)
C;7(a - B) + €377 £(B), > (2.69)
(@) = oo - p)? + o )a - pre(o) + o) [ s(erars
a S
\
x(o) = X](_O)(d- - B),
x(l) - X£l)(m - B)2 4 Xél)(m - B)e(B) + Xgl) L/ﬂB f£(7)ar,
) = 2By~ 0)® 4 xB(a - p)22(p) +x{B(a - B)Eﬁ(aﬂz +
P (2.69¢)

Xﬁ?) Q/WB (t - B)(t)ar + Xg“')f(ﬁ)t/nB f(r)dr +

(s

ng) fBE(Tasz + ng) \/:B (@ - 7)f(7)ar;

- RE2G
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£0) = TJ(_O)B + Tgo)a,, w

501 o T](_l)(oc - B2+ '.T.‘él)(cx. - B)e(B) + Tsl) ‘[ £(t)ar,

o) - xE) o - p)® 4 2B (o - BY2(e) + e - 8)208)]?

(Z)f (< B)f('r)d'r+'l‘(2)f(ﬁ)f £(z)ar +

(2) f [( ] at + T m (m - 7)f(r)ar. )

The coefficients appearing in equations (2.69) are functions of U,
C, and ¢ and are listed below: -

> (2.69d)

o) vld) o & (o0? - B) )
Uél) e ng) (U - CiéU + oC) & (2.702)
yé2) - _ (U +c)(U + oC)
3 4C S
(1) 2 2
¢ =-2@@ C§2) -
ot 1 ) Céz) - {u o) - (2.70D)

céz) (U +c)?

- 4C



42

(o) 2 - 2
X = 9___2_03_
XJ(_l) = - —8%(%)2 [(20 + 1)C% + Uz:l
xél) _ :ZZI (v - ¢)2

x(1) - 2‘26—2—1 (U + ¢)2

3

iz) = - 4‘;200 (30 + 2)c% + Uzj + UT(Z)

%2 ;2“;0% {ac (c - 70) + Uz[(40 - 1) - t‘{]}+ urf?)
Xg 2) _ (o + :;;ésc +1) (g .c)+ Ung) -
i = 9 (1 + zowc + oc?) + UILE)

x§2> = °—'2—l (U +¢) + UTé.Z)

Xéz) = E’_;l [(c - 3)U + (30 - l)c-_] + UTG(;z)

ng) = { [Z?+ (a-l)tzl Uz[(o -1 U + (cr -g- 1)0‘_]}

NACA TM 1439

7

»2.70c)

UT(2)
")

622S



5239

CE-6 back

NACA TM 1439 43
T£O) - Uég : k
Téo) CZE'U
(L) _ 1.5 (4 o0?)
80 G2
L) 04;21 (U -c)
Tél) = UACZ (U + c)
T&Z) - - _55%53 (02 + oc2)(2U% + oC?)
Téz) - . :z:cé [UCZ(C - 30) + UR(3C - suﬂ ‘ (2.700)
ng) __f(o+ i;ég + 3)(U _¢)
Tiz) = zs:cg [%(c +1)Cc% + 40lC + UA(30 - iﬂ
Téz) - & =2 (U+0)
Téz) = ;ELE;é’Tl [:(c - 3)U + (30 - 1)9
ng) _ g éc1 (u Zsc) (02 + oc?).

~

To illustrate the nature of the solution for the "simple-wave-type"

disturbance, an example was computed for the same values of U, C, €, and
The disturbance function £(t) is
0.00869205 =and B = 4.0.

g used in the preceding example.
again defined by equations (2.61) with B =

The

values of the coefficlents (egs. (2.70)) for these values of the parame-

ters are given in table (2.2).

The results of the IBM computations are shown in Figures (2.21) to

(2.23) for x values of 0.5, 1.0, and 2.0, respectively.
of x +the character of the varistions of both u and ¢

consisting of almost linear changes in the variables between their initial

At all values

are similar,
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and finel values. The most interesting aspect of the results 1ls the fact
that in the region between a = 0 and B = 0 +the varisbles are essen-
tially constant at thelr original veslues. This indicates that the
"simple-wave-type" disturbance ylelds a flow in which the B = O charac-
teristic approximates a "rest" characterlstic. The principal difference
between the first- and second-order solutions is again in the level of the
variables; this reflects the convergence of the-terms representing the
steady flow to the exsct solution. It is alsc seen thdat the slopes of the
second-order solution during the period in which the flow gquantities are
changing are grester than those of the correspondlng first-order solution.
The maximum departure from constant conditions in the region between
a=0 and B = O occurred in the second-order solution for c at

X = 2.0. The errar in ¢ in this region is, however, only 2 percent of
the total change in the wvariable during the translent, a quite reasonable
approximation to steady conditions. Thus, even the second-order solution
yields an essentlally steady duct flow below g = O.

Two other points should be noted about the nature of the itransient.
First, as the compressive disturbance ls propagated upstream, its magni-
tude increases. For exsmple, at x = 0.5 the total change in u 1is
0.0186 or 4.6 percent of its initial value. At x = 2.0 the change In u
is 0.0235 or gbout 4.8 percent of its initlial wvalue. Corresponding
changes in ¢ are 0.00366 (0.34 percent) at x = 0.5 and 0.00426 (0.38
percent) at x = 2.0. The second point of interest is that at each cross
gsection the value of @ remains essentlally constant at 1ts original
value during the transients At x = 0.5 the initial value-of Q 1is
-5.8042, and 1ts termlnal vealue is -5.8039. At x = 2 -the corresponding
values are -5.8513 and -5.8493. This fact will play an important role

i1n the next section.

To check the accuracy of the perturbation-series s¢lution, this
problem was sglsc solved by the method of characterlstice. The character-
igtic net is shown in figure (2.24). Again, the values of the flow varia-
bles at fixed crose sections were obtalned by linear Interpolations between
the net points and are shown as the data symbols on figures (2.21) to
(2.23). At x= 0.5 and 1.0, the method-of-characteristics sclution is
in excellent sgreement with the second-order perturbation-series solution.
At x = 2, the agreement is not as good but is still quite acceptable;
the maximum deviation occurs in the varisble ¢, being gbout 6 percent
of the change in ¢ at thie station. It is of interest to note that-at
x = 2.0 +the method-of-characteristics solution exhibits a slight decrease
in ¢ 1in the region between o = 0 and B = 0, as does the series solu-
tion. Thus, over an area ratio of 1.22 the séries solution 1s seen to be
quite accurate for the unsteady flows investigated.

6225



-

NACA TM 1439 45

F. Summary

In this section the method of coordinate perturbstion was spplied
to the solution of quasi-one-dimensional flow problems. It was demon~
strated that, for ducts for which the logarithmic derivative of area varia-
tion with respect to the space coordinate i1s a functlion of the smallness
perameter ¢, perturbation-series-type solutions for both steady and un-
steady flows can be obtalned. T

By means of numerical examples it was demonstrated that the solutions
for the steady flow converge to the exact duct flow solution. The_prinC1é
pal factors affecting the rapidity of the convergence were shown to be
the area ratio and the magnitudes of the initial data. In general, good
representation of the flow was obtained over ares ratios as large as 1.8:1.

For unsteady flow it was shown that solutions could be written for
arbitrary disturbance functions in both flow varisbles specified on time-
like arcs. For such initial dasta the problems were termed "inverse" prob-
lems because, from & physical viewpoint, the solutions give the unsteady
flow in other regions of the duct (at earlier times)} which would produce
the specified variation of the flow quantities on the boundary. It was
also shown that & reasonable approximation to the "direct" problem (i.e.,
one in which a region of steady flow bounded by a "rest" characteristic
exists) is obtained by specifying that one of the Riemann variables is
constant on the time-like boundary arc. This disturbance has been termed
a "simple-wave-type" disturbance. A numerical example indicated that,

even for the second-order solution, the maximum change of the dependent —~

e —

variables below the "rest" characteristic was of the order of 2 percent

of the magnitude of the excursion of the variasble during the transient.
For unsteady flow the solutions obtalned contained terms involving the in-
dependent varisbles o and B, the disturbance function and definite
integrals thereof. Therefore, solutions for integrable disturbance func-
tions are easily obtained. T

Comparison of the unsteady-flow solutions with those obtained by
the method of characteristics indicated that the second-order series solu-
tion accurately represents the flow. As was the case for steady flow, the
accuracy of the series solution decreases with increasing distance (i.e.,
area ratio) from the boundary. The series solutions offer an advantage
in computational effort over the method of charascteristics calculations.
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IIT. INTERACTION OF A SHOCK WAVE AND A
DISTURBANCE IN A DUCT FLOW “u

In section II, perturbation-serlies solutions for unsteady quasi-one-
dimensional flow were developed. These solutions are now applied to the
determination of the motion of a shock.wave in a diffuser flow under the
influence of a disturbance origlinating downstream of the shock. An ap-
proximate relation is used for the shock transition. It -is shown that,
for a linear variation of the flow varisbles in a "simple-wave-type"
disturbance, an analytical solution for the shock path can be obtained to
first order in €. This solution is compared wlth both first- and second-
order solutions obtained by numericel integration of the dlifferential
equatlon of the shock path.

A. The Equation of the Shock Path

FPor weak and moderately strong shock waves, the shock velocity can .
be approximsted by ’

V= (5y555) + 3 [(agtes) - (@e73,)] = [(agres) - G502 (3.1) -

where V= v/cy (cf. ref. 6, eq. (72.06). In this equation the subscript

8 refers to the immediate shock location, the barred quantities represent——
conditions upstream of the shock, and the unbarred terms represent condi-
tions downstream of the gshock. This equation is cortect to second order

in the shock sitrength. Within the same degree of accuracy, the shock
transition 1s homentroplc; and, for a "forward-facing" shock wave (when

the fluld particles enter the shock from the side of larger x-values),

the Riemann variasble Q i1s constant across the shock; that is,

u, - 0c =us-cc

s s (3.2)

s"*

These equations are applicable for weak and moderately strong shocks, and
the development that follows is wvalid only for such shocks.
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Consider a diffuser flow in an "epsilon duct" with a stationary shock
wave at the cross section x = X (see sketch).

of >N

Cldé?C)

For a diffuser flow with an intially stationary shock, the conditions
upstream of the shock (i.e., u and c) are functions of x alone and

are not influenced by any subsequent shock motion (unless, of course, the
shock 1s regurgitated). This, and the approximate shock relations (egs.
(3.1) and (3.2)), imply that, regardless of the shock velocity (within
the limits of accuracy of eq. (3.1), of course), the value of Q remains
constant at a glven duct cross sectlon as the shock passes the section;
although @Q changes from section to section. As noted in section II-E,

a "simple-wave-type" disturbance has the property that the value of @

at a given section remsins approximately constant at its initial value
during the transient. Thus, 1f the disturbance downstream of the shock

is of this type, it will approximately fulfill the boundary condition at
the shock, that is, equation (3.2). This is equivalent to neglecting the
"back reaction” of the shock on the flow field behind the shock. In other
words, the flow field behind the shock is completely specified by the
solution for the "simple-wave-type" unsteady duct flow. The subsequent
development is, therefore, based on the "simple-wave-type" disturbance.

The veloclty of the shock wave is given by
ax/dt = V. (3.3)

If the flow field behlnd the shock 1is described 1in terms of the character-
istic parameters o and B, we have

ax = x da + Xp ag,
(3.4)
dt = tm da + tB dag.
Thus equation (3.3) can be written

= V.



48 - NACA TM 1439

The partlal derivatives of x and +t -are related by the equations of
the characteristics; that is,

X

o (u+ c)ta,

(3.8)

Jn:’3 (u - c)t .

Substituting equations (3.6) into equation (3.5) and solving for da/dB,
we obtain:

ag [V - (ug - cg)ltg

@ " T(u, + og) - Vi, =7

where the subscript s again indicates that u and c¢ are to be evalu-
ated immediately downstream of the shock. Substltution of the expression
for V (eq. (3.1)) then ylelds

gﬁ_{%(scs'us)*’%(— +C) _'i-‘—s[us+c)'(us+ci]2}tﬁ
R O I R N TSRS L

(3.8)

In this equation, t and the "immediately downstream" quantities ug, cg

are known functlons of a and@ P glven by equations (2.69) for the
"simple-wave-type" disturbance. In the flow field behind the shock, up

to and including the Instantaneous position of the shock, x i1s also a
known functlon of o and PB. Therefore, in principle at least, the
"immediately upstream" values ug and ‘¢, can be considered as functions

of the characteristic varisbles as u and ¢ are functions of x =&alone.
Thus equation (3.8) may be written as

%=M%M- (3.9)

This is an ordinary differential equation for the relation between o and
B on the shock path. Substituting the soclution of this equation in the
equations for x and t (egs. (2.69c) and (2.69d4)) yields a parametric
representatlion of the shock motion resulting from the disturbance specified

at the boundary.

Equation (3.8) can, of course, be integrated numerically for specific
cases. It is of interest to see if an analytical solution can be obtalned,

and such a development follows.

'3

FalataTal
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B. Approximete Solution for the Shock Path

The first-order solution for the unsteady flow field behind the shock
for a "simple-wave-type" dilsturbance is repeated below for comvenience:

w="U+ e[U£l)(a, - B) + Ugl)f(B)], A
c=0+ e[C}_l)(a, _B) cél)fcsﬂ ,
x=x8a - p) + e[(l)(a - )%+ xiM(a - p)e(p) +
xgl) £ f('r)d{l, [ (330
& = 208 4 20y + GEE](_l)(m - )% + T (a - B)e(p) +
Tél) [B f(‘r)dﬂ- )

From the last relation it is easily shown that

t = %0+ elenlt(a - p) + {le(e) - 2{Mea)] )

ct
|

8= TJ(_O) + e[—ZT(l)(on - B) + (‘I‘gl) - Tél))f([s) + ? (3.11)
( )(a - B)e! (B] )

The first step in the development is to express u and ¢ 1n terms
of the characteristic parameters. For a steady ducet flow with conditions
U and C specified at some area Ay, the following relations hold:

A _ /2 s (3.12)
o [(c + 1) - jcr/z

w? + ge? = (o + 1). (3.13)
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Assume that at some area A(X) = A, upstream of and smaller than Ags but

B8till greater than that at which sonic flow would exist, a shock occurs
(see sketch on D. 47). At this station we thus have on the downstream -
slde of the shock

UU/ZUCU_ .
w@®{(o + 1) - [uciglz}o/z

For a gtationary shock the conditions on its upstream side can be deter-
mined from equations (3.1) and (3.2) with V = 0, or_more exactly from

S
RC e

ugug = 1, Prandtl equation; (3.14)
2 2_72, = - : T 3
ug + ogeg = ul + acZ, energy equation. (3.15)

The steady supersonic flow ahead of the shock is now glven by

_ 2.5 @E®]°

ﬁ[(cr + 1) - EZJU/E,

é% (3.16)

W+ 08 = (o + 1). (3.17)

Thus, specifying an initial steady shock location by x = X =nd the
condltions U &and C at the end of the diffuser, Ag, completely deter-

mines the varisbles u and c¢ ahead of the shock.

In the problem being considered, the duct=ares variation is again

written .. o

-e(x-X)

Equation (3.16) therefore may be written -
2 —_—
_2 — - _»  €=(x-X)
u /G[(c + 1) - uz] = UUZ/U- Gt ¢ © (3.19)

where, for simplicity of notation, u(X) and ¢(X) immediately on the up-
Btream side of the shock at its initial locatlon have been replaced by
U and C, respectively. .
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In order to develop the upstream flow varlables as functlions of o
and P, 1t is assumed that these quantities can be represented to first
order by

T + ealH),

° (3.20)

T = (L + eatl)y,

where E(l) end o) are functions of x. Expsnding equation (3.18) to
the first power in e after substituting equations (3.20) yields:

@ v e et o R - lie el - 1)

Upon substituting for x from equation (3.10), the right hand side

becomes
=2 c2 - ye =
oC{L + € % [;m - B) ——Ea—g— + 0(e) - %j};
whence
—(1) _ o [oia W - cé =
u T T o+ 1 (l _ sz) (CL - B) 3¢ + ]. (3-21)

Substituting equations (3.20) into (3.17), expanding to first order, and
using (3.21) gives

—(1) i P
c - 1 7 I:(@ - B) + )a (3.22)

U+l(l 2C

A term that sppears in the shock veloclty relation is (E +'E). This can
now be written in terms of o and B as

- = == TC(T - oC) oy UB-c® 2
u+c—(U+C)+e(U+l)(l_ﬁz) (@ B)—-ZC +}E]. (3.23)

Thus the flow variasbles shead of the shock are given to first order as
Punctions of the characteristic varigbles.
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We now turn to the evaluation of the right hand side of equation
(3.8) to firet order. Consider the bracketed factor in the numerator 3

that is,

(3cg - ug) +3 (ug +73,) + E%; (ug + cg) - (u, + Esﬂz- (3.24)

R

i
LV

Substituting the expression for the flow variables from equetions (3.10)
and (3.23) and expanding equation (3.24) to first order in ¢ gives

R =Ry + eEil(u, - B) + sz(s) + Rz Scj, (3.25)

where

3 -U ,U+C . 1 = =l2
Ry==5— +—3— +35% [(U+C)-(U+-CZ},

_ _ U(sUroe) | WE(G-oB)(UP-c8) | [(Uic) - (T + ©)U(oC-U) _

1 40 4(o+1)(1-0%)C 80C
[(Us) - (U+0)ITU(T-oC)(vP-c?) _ [(wmic) - (G+5)12 To(u2-c?) 4
8(o+1)(1-0%)C 16(o+1)Tc(1-T2)
R, = 3 é o, (o+ 1)U ZEC) - (T + E:')],“
_ W@-T) _ _ [we) - (GE)T(G-0€) _ [(usC) - (TT)1%T°
2(o+1) (1-T2) 4(o+1)(1-0%) 8(o+1)(1-T2)C
(3.26)

Similarly, the bracketed factor in the denominator of equation (3.8),
= 1 1 = - 1 — = 112
S = 5 (us + cs) -3 (us + cs) - —8'5 I:(U-S + Cs) - (uS + csa » (3.27)
S

reduces to

S =85y + eESl(or, -B) + szf'(s) + Sz i], (3.28)
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where
g Ux+C T+C [(U+C)- (T+C)2 A
o~ "2 T2 ~ sC ?
g. < UloC-U) ~TC(U-oC)(uB-c?) _ [(usc) - (G+C)1u(oC-U) ,
L 40 4(o+1) (1-T2)C 80C
[(uic) - (TE)IB(T-aT)(UP-c2) , [(wsc) - (BiT) 1%GP(uPc?)
8(o+1) (1-02)c 16(o+1)T(1-T%)c S
- (o + V)I(u+c) - (T+CT)J
2 2 4C ’
o, o . _00(-a8) , [(wc) - (BE)[E(@-o0) , [(usc) - (BT)I*GE
37 T o) (1) | (o) (17 8(o+1)T(1-T8)
(3.29)

Substituting these expressions and those for the partial derivatives of

t 1into equation (3.8) yields

{Ro + elRy(a-8) + Ryr(p) + REIHE®) + er-2rtM(arp) + (M- )2(p) + 2 (ap)e (81}

S (3.50)
a8 {8 + (8, (a-8) + 8,2(8) + 8K IHELO) + E[ZT(l)(apB) + Tie(p) - 2{He(a)]-
which, when expanded to first order, becomes
% = By + e[(cx,-B)Bl + £(B)B, + (a-B)E'(B)Bz + £(a)B, + }_CBS]; (3.31)
where N
(0) (0)
Bo = RoTy SoTz >
1 (1) (o), (o) (1)
Bl=ﬁm -2Ty 'Rg + T l-BO(Tz S, + 2Ty So)s
SoT2
1 (L) (1) (0) (1) (0)g
32=——®-)-ET3 - T, )Ry + Ty ‘Ry - Bo(Ty 'Sy + Tg ),
? (3.32)
B =R T(l) s o0
3 0°2 o2 ?
- 1 0
By = BoT:ga )/Tg ),
(o)
T1 'Rs S3

B = - B -
) 0 08
SOTS ) 0 R
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Equation (3.31) cannot be formelly integrated unless the disturbance

function £(7) is known.

integrated. Making use of this possibility, we introduce for the dlsturb-

ance, the function

If f(v) is a linear function of its argument,
equation (3.31) becomes a linear differential equation and can be easily

£(1) =

T, 0 7% 8

K5, T > 8;

O, 1< 0.

(3.33)

Because of the nature of this functlon there are three zones in the
X,t~plane in which different versions of the right hand side of equation
(3.31) hold. These zones are bounded by the characteristics shown in
the following sketch:

Shock

x=X

In the three zones, the function, its derivative, and integral assume the

following values:

B
Zone | £(a) | £(B) | £'(B) L//W £(1)ar
o]
T | Ko | KB K % k(g2 - o?)
1.2, 1.2
II | K5 | KB K K[% B2 + = 8° - aé]
111 K& Kd 0] K5(p - o)

6%22S
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In zone I, equation (3.31) becomes

-g—g- - meEl + KGBE5 + B4£\ = By + e}_EBS + eE{QBZ - B3) - By|B. (3.34)

The solution of this equation is

| €DyB
@ = Do + Dyp + (o, - Dyle ~, (3.35)
where
- N
. (B, + XB)[B, + K(B5 + B,)] + [K(B, - B5) - BJ],
(o B 2
eEal + K(B3 + 134]
= - 2
1 B, + K(B; + B,)
D, = By + K(Bz + B,);

J
and use has been made of the initial condition that, when B =0, a= ag.
The value of ag 1is determined from the initial shock location. Relations

of form similar to equation (3.35) hold for the other zones; that is, o
is the sum of a linear function of B and an exponential function of B.
Substitution of equation (3.35) into the expressions for x and t in
equation (3.10) yields, to first order in €, a parametric representation
of the shock path under the action of a "simple-wave-type" disturbance of
the form given by equation (3.33). The shock path cannot be given ex-
plicitly iIn x and t ©because the nature of the a,pB-relationship along
the path does not permit the ellmination of o &and B8 algebreically.

C. Exemples

The solution for the shock path presented above is correct to first
order in €. As noted previously, the expressions for the shock transi-
tion used in deriving this result are correct only for weak or moderately
strong shock waves. Because of this faect, shocks occurring at an upstream
Mach number of about 1.5 (for 1 = 7/5) are about as strong s shock as
can be accurately represented by the approximate equations. Therefore, _
the examples chosen will have an initial upstream Mach number of 1.5.

Another fact that enters into the determination of the region of
applicabllity of the approximate solution for the shock path is the
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accuracy of the representatlion of the initial steady flow offered by the
approximate relatlons used. The flow conditions upstream of the shock
wave have been represented by equations (3.20). For a shock at Mach 1.5
we have U = -1.36458 and C = 0.90972. Using equations (3.21) and (3.22)

to evaluate T(1) ana E(l), the variation of~ W and € with (x - X) has
been computed for € = 0.1 and is shown in figure (5.;), along with the
exact velues of these parameters. For valués of (x - X) up to 0.4, the
first-order representation of the flow varlsbles 1s quite good. At

(x - X) = 0.408, the Mach number of the flow is 1.425. Therefore, 1f the
disturbance magnitude is limited to that which would result in a finsal
steady-state shock location at an upstream Mach number of about 1.4, the
representation of the upstream conditions should be adegquate.

The disturbance function is specified on an x = constant 1line down-
stream of the Initlial shock location. From the examples given in sectlion
IT for the steady-flow solutlon, 1t was evident that the first=order rep-
resentations of the flow variebles are accurate only for relatively short
distances upstream from the boundary. Because of this, the farther from
the initial shock location the place x = conhstent 1is selected, the
greater will be the error in the shock path computed by the first-order
solution. To illustrate the accuracy afforded by the first-order solution
for the downstream flow variables, two examples have been computed. TFor
an upstream Mach number of 1.5 the Mach number on the downstream side of
the shock is 0.7011. If the boundary on which the dilsturbance is speci-
fied is located at the sectlon at which the initial Mach number is 0.7,
we have X = 0.007, U= ~0.73179, and C = 1.04541. For these conditions
the downstream flow variables are shown in figure (3.2). (It will be noted
that X does not enter this calculation exceptby detérmining U and C
et x = 0.) For values of x up to 0.4 the first-order representation
is quite good. If we choose the boundary at the section where the initial
Mach number is 0.6, we have X = 0.830, U = -0.63481, and C = 1.05801.
This case is shown in figure (3.3). At the initial shock location, the
first-~order values of the flow varisbles are still reasonably accurate.
Upstream of this station the departures become quite large, especially
for c. It should be noted that the values of the downstream flow varla-
bles upstream of the initial shock location (which do not exist prior to
movement of the shock) serve as the basis for the new downstream flow as
the shock moves upstream. Hence, errors in final shock location will be
larger when the boundary conditions are given farther from the initial

shock position. —_

The first shock path calculated 1s for a shock initially occurring
at a Mach number of 1.5 in a duct with e = 0.1. The disturbance function
is specified at the downstream section at which the initial Mach number
is 0.7 (X = 0.007) as in figure (3.2). The values of U, C, U, and C
have been given sbove. The magnitude of the disturbance was selected so
that the final shock position would be that corresponding to an upstream

6%2S
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Mach number of 1.43. For a & of 4, the corresponding value of K (cf.
egs. (3.33)) is 0.010025. For this disturbance the shock should come to
rest at x = 0.388 (cf. the sketch on p. 54, point L). The coefficients
of equation (3.31) are:

By = 1.04087, By = -16.92621,
By = -0.78888, B4 = 0.35140,
B, = 16.10895, By = -1.52893,

and ay = 0.02629.

The equations relating the characteristic variables on the shock
path are:

Zone I: & = -1.39236 + 1.17277B + 1.41865¢~0-095508

Zone IT: o = =-1.32790 + 1.168498 + 1.35689e~0+095858,

Zome ITT: « = 1.34140 + B - 1.46778e~0-078888,

Substitution of these values into the expressions for x and t+ in equa-
tion (3.10) yields the shock path shown by the dash-dot line in figure
(3.4). The shock asymptotically approaches a final position of x = 0.349,
which is about 90 percent of the excursion it should have undergone. The
greater part of the shock motion occurs in zone ITI, which starts at

x = 0.076 on the shock path. The value of the final shock location can
be obtained directly from the o,B-relation 1in zone III. From this equa-
tion, (¢ - B) is seen to have a limit of 1.34140 as B = . In zone III,
the integral appeasring in the expression for x is a function of (o - B),
and therefore x 1s a function of this quantlty elone in this zone.

To check the accuracy of the analytical expression for the shock
path, equation (3.8) was integrated numerically by using both first- and
second-order representations of the flow field behind the shock (i.e.,
egs. (2.69)). The coefficients for these equations are listed in table
(3.1). The numerical integration was programmed for the digital computer
by using the Runge-Kutta method of Integration and an increment in B of
2. (Halving the increment of B did not change the results.) The results
of the numericel integration are shown as the solid and dashed lines in
figure (3.4) and are tabulated in teble (3.2). For this case the snalyti-
cal zgpproximation compares very well wlth that obtelned by numericasl
integration.
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. The shock path was then calculated for the same initial shock condi-
tions with the disturbance specified at the section at which the Mach
number was 0.6 (X = 0.830 as in fig. (3.3)). For & & of 4, the value
of K for a final shock Mach number of 1.43 is 0.006225. For ithis case
the coefficients ofequation (3.31) are:

Bp = 1.338186, By = 15.60186, By = 0.63237,
B, = -0.48838, Bz = -15.17776, Bg = -1.56876, g
[To]
and Qg = 2.69885. :
The a,P-relations on the shock path are now:
Zone I: o = 0.57893 + 1.17443B + 2.11992¢~0-05790B
Zone II: o = 0.73649 + 1.166588 + 1.95260e~0-05829B,
Zone ITT: & = 5.08497 + B - 2.59647e~0.04884B,
The shock path calculated from these equations is shown in figure (3.5) «

as the dash-dot curve. The curve is similar in shape to that of the pre-
ceding figure and hag an asymptote of x = 1.473. The final shock posi-
tion should be x = 1.211. Thus, specifylng the disturbance farther from
the 1nitial shock location has lncreased the error and caused the error

to change sign. Numerical integrations of equation (3.8) for this case
yielded the other curves on this figure. (The coefficients are listed

in table (3.3) and the results of the integration in teble (3.4).) For
this case 1t 1s seen that there 1s an apprecilable difference between the
analytical approximstion and the corresponding first=order numerical
integration. This difference results from the higher order terms that
were neglected in obtaining eguation (3.31). In the first example, these
terms were of small import because the disturbance was specified so close
to the shock. The second-order numerical integration yilelds a finel shock
posltion of x = 1.162, which represents a shock movement of 0.332 units.
The second-order integration in the first example gave a shock movement

of 0.343 units, which 1ls quite close to the result-of the present example.
This reflects the improvement of the representation of the downstream
flow afforded by the use of the second-order representation of the dlsturb-
ance function.

In these examples the shock displacement obtained from the second-
order numerical integrstion (the most accurate result) was always less
than that which should have been obtained. This error in shock displace-
ment results from the fact that the values of U and ~C used in the
calculations were obtailned from the exact shock transition relations (egs.



5239

CE-8 back

NACA TM 1439 59

(3.14) and (3.15)) rather than the approximate relations used in deriving
the equations for the shock path. In figure (3.6) the Mach number down-
stream of the shock is shown as a function of the Mach number shead of
the shock for both the exsct and approximate transitlion relations. For
the seame downstream Mach number, the approximate transition requires =a
greater upstream Mach number than the exact transition relation. Because
the solution for the shock path employs the approximste shock relations,
the shock should come to rest at a higher upstream Mach number, that 1is,
after e smaller excursion, than would be indicated from the exact rela-
tlons. If a lower initial shock Mech number were chosen, the error in
final shock location would be smaller.

D. Discussion

The solution obtalned for the interaction of a shock wave gnd a
"simple-wave-type" disturbance in s duct flow ylelds a shock path that
may be described as an “exponentiasl decay"” approach to a finsl position.
This result is quite similar to that obtained by Kantrowitz in reference
2, wherein he obtained a first-order linear differential equation relating
x and t on the shock path by linearizing the equations of motion end
the shock transition relations.

In the examples given a2bove, it was noted that the mejority of the
shock motion occurred in zone III; that isg, where B 2 8. In this region,
as was required by the boundary conditions, the flow varisbles downstream
of the shock have reached their terminel wvalues. Thus, the effect of
neglecting the "back reaction" of the shock motion on the downstream flow
conditions is quite pronounced in zone III. This assumption, which is
inherent in the development presented, is not as restrictive as might ep-
pear at first glance. In the next section, it will be shown that the con-
ditions specified on the downstream boundary are reasonable spproximations
for the actual process.

From the examples presented, it can be concluded that the first-order
analyticel solution for the shock path offers a reasonsbly accurate rep-
regentation of the path, provided that the cholce of the initial conditions
are such that the first-order representations of the initial steady flow
(poth upstream and downstream of the shock) are accurate. That is, the
boundary on which the disturbance is specified should be falrly close to
the initial location of the shock. Also, the disturbance magnitude should
be selected so as to result in a shock displacement that is within the
region of accuracy of the first-order representation of the upstream con-
ditions. If the boundary conditions are required to be specified at
falrly large distances downstream of the shock, numerical integration of
the differential equation should be employed.
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IV. THE FLOW FIELD BEHIND. A MOVING SHOCK WAVE

In the preceding section a solution for the interaction of a shack
wave with a "simple-wave-type" disturbance in a duct flow was presented.
This sclution was developed on the basis of two assumptions: First, that
the simple-wave relation (u - oc) = constant held on the downstream
boundary. Second, that the "back reactlon”" of the shock motion on the
flow could be neglected. The solution obtalined indicated that under these
asgsumptions the greater part of the shock motion occurred after the down-
stream flow had reached its terminal state. Thils leads one to inguilre
how well the results obtained under these assumptions represent the actual
process. That is, in the flow field behind a moving shock wave, does the
u,c-relation at a given cross section approximate Q = constant, and 1s
the back reaction of the shock sufficiently small in magnitude that it
may be neglected?

The problem at hand is, then, to find the flow field behind a shock
wave moving in a duct flow. This falls into the category of an “inverse'
problem as defined in section II aend is termed the "inverse-shock" problem.
The solution to this problem can be viewed as ylelding the nature of the
disturbance that would result in a prescribed shock path.

A. Derlvation of the Solution
Consider a shock path in the x,t-plane given by
x = € £(t). (4.1)

The shock velocity is then given by

V=%—3§=ef'(t). (4.2)

Because an initially steady flow in the duct is desired, the initial
velocity of the shock wave must be zero. Therefore, it is prescribed
that .

£1(0+) = 0 (4.3)
and, for convenlence,

£(t) = 0, t< 0. (4.4)

‘ACDC
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Ahead of the shock there is a steady supersonic flow which, for the
"eps%lon duct,” can be represented to first order by (cf. section III,
eq. (3.20))

T + o),
5 (4.5)

T =T+ &M,

where U and C are the flow conditions Immediately upstream of the
shock at i1ts initial location, x= O 1in this case, and

E(l) = %] 62 x )
5 o+ 1 7= ?
(1-7%)
—(1) 1 g2 ‘ (e-6)
Cs =-c+l(l_ﬁz)x')

As shown in section IIT, these relations yleld quite accurete representa-
tions of the upstream flow conditions for the magnitude of shock digplace-
ment considered.

After specifying the shock path and the upstream flow field, the
next step is to determine the conditions on the downstream side of the
shock. From the approximate shock transition relations (eqs. (3.1) and
(3.2)), the conditions on the downstream side of the shock can be deter-
mined as follows:

It is assumed that on the downstream side of the shock the flow
variables can be represented to first order by

U(l + eugl)),

e
]

(4.7)

i

s

c(r + ecgl)),

where U and C are now the flow condltions immedistely downstream of
the shock at its initial location. Substituting equations (4.7) and
(4.5) into equations (3.1) and (3.2) and expanding the resulting
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expression to first order in € gives, from equation (3.1),

V=%(U+C)+%(ﬁ+5)+—8%(__(U+C) - (I_I+Eﬂz+\

€ ZlC: (-ffﬁgl) +EE£1))(SE +0-U-C) -
> (4.8)
i_(U+C-ﬁ-E)2-Es(l)+
&c
-i—a (ngl) +Cc§l))(5 -Ta+cC +U)}, )
and, from equation (3.2),
T- o€+ e(ﬁﬁgl) - o'é'aél)) =U - of + e(ngl) - achl)). (4.9)

Bubstituting equation (4.2) into equation (4.8) and equating the coeffi-
clents of like powers of € 1n equations (4.8) and (4.9) gives
U+C+TI+5=-—]'E—(U+C -T - ©)%,
4 ) (4.10)
U-0oC=T0- oC,

and

£1(6) = & (@1 4 To)(F 4T - v -0 - )

(U+C-ﬁ-5)23£l)+

1
&c > (4.11)
1

= (ngl) + Ccél))(a -T+U+C),

ﬁﬁél) - dEEgl) = ngl) - UCcél)- J

These equations determine U, C, and the functions ugl) and cgl);

- T 2 ,\,—'_" 4.12
C=- C+ 7 c(2u - C), (4.122)

these are given by

Q
1
=

[

6229
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U=0C+U-°E: (&.120)
(l) . 4:6 - g C(T+C
°s £ (e) (c+1)C(C-T+U+C) (e+1)2(1-F)c {GC(U+C) )
2C(oC - T)(FC +T -U -C) + GUu+ ¢ - T -C)2 (4.1%a)
2(C-T+U+C) , .
(1) s 45C oU C(T+C) -
ve = T(E) (c+1)U(C-T+U+C) v (0+1)2(1- T)U o
SE(T - T) (T +T-U-¢) +BU+C =T -T)° (2.13b)
2(C-T+U+C) ‘ |

Substituting equations (4.13) into equations (4.7) gives expressions of
the following form for the flow quantities on the downstream side of the
shock:

ug = U + B (%) + €Bx,
(4.14)
cg = C + €B2'(t) + eBox.
The Ej are glven by:
\
E = 4:6 »
1 (¢+21)(C-T+7U=+C)
E, = - U {05('15‘+5) +
(o + 1)3(1 - )
58(o€ - TW(C + T-U-C) + BU+C - T - T)2 )
2(C-T+U+C)
- 46C & (4.15)
3 e+ -0+U+c)
E, = ol 55 + T) -
£ o+ 12 - U"‘-){
26(C - TN (L +T-v-0) +TW+0-T-B?
2(C-T+U+C) Y,
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Finally, substituting equation (4.1) into equations (4.14) gives

u,

s = U+ eBzf'(t) + 2B, £(t),

(4.18)

cg = C + €By£'(5) + P £(t).

These are the conditions on the downstream side- of the shock and are,
therefore, the boundary conditions to be satisfied on this side of the
shock path. It is of interest to note that the effects of shock velocity
appear as terms of first order in €, whereas the effects of-shock dis-
placement appear as terms of second order.

Having obtained the conditions on the downstream side of the shock,
we now proceed to determine the flow field downsiream of the moving shock.
A solution of equations (2.37) is sought under the boundery conditions
glven by eaquations (4.16). The boundary conditions are to be satisfied
in the following manner: The shock path is to be mapped on o = § such
that t = o = B; that is,

\
x)(a,@) = x(00(s,p) = 0;
M (a,a) = 2(a), xH)(p,p) = 2(8); P (4.17)
™ (a,0) =« g8y =0, n>1y)

t(o)(a,m) = a, t(o)(B:B) = B;

(4.18)
£ (g,0) = 0 (p,8) =0, n>o0;
and
u(o)(m,a) = u(o)(B,B) = U; )
w8 (a,0) = Bg21(a), ut(p,p) = B2 (p);
(4.19)

u(z)(m,m) = B f(a), u(z)(B,B) = B,£(B);

u(n)(m,da) = u(n)(B,B) = 0) n > 2; Y

622S
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c(o)(a.,a,) = c(o)(B,ﬁ) = C; )

c(l)(m,a.) = Elf’(a.), C(l)(ﬁ;ﬁ) = Elf'(ﬁ).'v

o8 (a,0) = Bye(a), c(8)(s,8) = E,e(8); (e-20
c(n)(m,m) = c(n)(B,B) =0, n > 2, )
The solutions up to second order are:
20~ g, )
O I P STC
u(®) = 6B - 8)% + uP)e(a) + UfPle(p) - o)
u{®)(a - p)e(p); )
0 _ g,
M < cWia - )+ e, (4.21p)
o(2) = = o) (a-p)2 + cfB2(a) + cfPe(p) + c{B(a-p)e (B);
NORFONEMON N
R T A FICH f(aﬂ + M (a-p)e (),
o) - o ap® - o @ [rr (6] 2 - o) £ﬁ wa |
4.21c)

B
z{2) [ ['(-JJZ ar - T8 (a-p)e(p) - T2 (a-p)e(a) -

1$2)(a-p)221(8) + 727 (8) [2(a) - f(Bﬂ;

J
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£(0) = . X§O)(m - B), A
1) = - x(aop)2 4 xlDe(p) + x{Pe(a) + x{1(amp)e (),
«(2) o _ x&z)(a-s)s + Xéz)(m-ﬁ)['(ﬁﬂz + ng) £B £(v)ar +

B
Xiz) ‘[ ['(Tﬂ 2 a1 + Xéz)(a,-B)f(B) - Xéz)(a-ﬁ)f(a.) +
182 (a-p)2e1(8) + P2 (8)[e(a) - 2(8)] .

7 y

> (4.21d)

The coefficlents are glven by (use has been made of the fact that
Ex = 0B )¢
3 1

UJ(_l) =uc/2 N

Ugl) = E:S

U](-Z) = U(UCZU- Uz!

Ug2)=§‘§_c (oC + U)(U + C) +%(E4_ UE2)> (4.222)

ng) = 2 (8, + oBp) - %ﬁ (o€ + U)(U + C)

Uiz) = E—gc- (u - ¢)(oC + U)

J

\
c:(Ll) = U8/2¢0 S
cél) = E./o
ciz) = v3c/4c

(U + c)? : 4.22p)
Cé2)=é%'33 L 'él_u(E‘L'dEz)? (
2

c{?) =E3%T®'z%+zl—c(E4+°Ez)
of?) - xy 0P )
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0) _U+C Y
p(0) _U+C

o) o L (ac? 4 0?)

T1

(L) =E5£Z;C—232(U+C) - &

Tgl) - E, (o + ic)rCGzI - C)

T](_z) —3 —— (o6? + V) (ac? + 20%)

ng) 3 2 (o :_5?((;0 + 3) U - )

ng) =T 203 [%(0+1)U5 + o(3-50)0C? + (40%+50-3)U%C + c(s-c)c%] -
n, Ot - m A g T

m2) _ g2 o= 1 _ _ g -1
T4 EL oo 203 (30 - 1)C + (o - 3)U Eg o

3
mé2) -
5 804C

3 [Ec+3)U5 + (202-0-1)U20 - o(3o+1)Uc? - U(U'l)cé] -

y Lo+ 1)U -0), Ul{o - 1)C + 2U]

(B, + oB
4 2 80C2 80C2

2
oo + 1)C% + 40UC + 50’—1U2]+
6 1602¢3 [( ( )

) fo+1)(U+c), Ul{o - 1)C - 2U]

(B, - oE
2 80C2 80C2

ng) Es "*l Ecg(c-su)+uz(3c 5{1]

520

T(z)_Ez (62 - 1) U+C _p ot1

g2 5 3 4oc2 . y
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>(4.22¢c)
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x£2 )

xia) |

2

x{2) -

ng)

x(2) .

xéz) =

(z)

(2)
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\
=2 - X = E "'l(U+c)2 = C
2c 2 3 4oc2 zc

2
U ( 2 (1) u+c g -1 2

= —— | (20+1)C +U2] Xy ! =t 2 LR U+C
BGCZI: 3 20 3 4002 ( )

) o g

g+ 1 2
Hegitiw-o

40C

= 482205 {(UCZ+UZ)(GCZ+ZU2) + O’CZ[(30'+2)02 + Uz:'}

2
GESCS (o + 2X(U - C)[ESO‘ + 1) - (o + S)IEJ

e zc {Us[(30+7)c + 5(c+1)t£] - oUe?|(30-1)C + (50-3){]
UZCEL.M + 30 - 1)C + (402 + 50 - 3){' +
oCo Eo +1)c + (3 - U)U]}+ o

Egc-le_l_Ec—l(Uz_'_C)_a-l%E r

4 20C 2 402 40

(a-l)(U+C)‘:(3c e + (G-S)IZ' > (0-1)(Usc)

160 c2
ESU
80203

(E, + oE ) 08: l(U 3 C) -;dclz (cr+1)C + (o-1)UC + ZUZJ

Es LU—JZ'%)' E(c+1)c3 + 30(o+1)UC? + (50+1)U%C + (30-1)U3] +
(E - oE, ) & ;Ul (U -é- C)z ) 8;;2 E0+l)02 - (o-1)WC +--2U§)

gLl g oC E: - 8UC + SUZJ + U (40-1)C2 - aUC + suﬂ
3262 C

20-1(U2-CZ) o+1L-c)
= Ez 2 E3 -
8¢ C C J

(4.22a)

[4020 + (20% + o + 1)uc? - 2(o® + 1)UZC - (0+3)Uﬂ

6£28
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These equetions give the flow field behind a shock moving on an arbitrary
path in an "epsilon duect." The only conditions placed on the shock path
are those of equations (4.3) and (4.4) and the fact that the shock does
not leave the supersonlc portion of the duct.

B. Examples
1. The "exponential"” peth. - The shock paths obtained in section III

were described as "exponential decays" to their final position. There-
fore, the first shock path investigated was chosen so that it would have

an "exponential-decay" approach to a Ffinal position. Such a path is gilven
by S _ ..

-bt
BilL-e (bt + 1) , t= 0;
£(%) ={o[ ] (4.23)

5 t < O.

This path obviously satisfies eguations (4.3) and (4.4). The coefficlent
B determines the magnitude of the excursion of the shock, and b (some-
times called a "time constant") determines the rate at which the shock
approaches its final position. For convenience, the path given by equa-
tion (4.23) will be referred to as the "exponential" path.

The first case investigeted was for a shock initially at & Mach num-
ber of 1.5 in & duct with € = O0.1. The amplitude B was taken as 3.5,
and b was chosen to be 0.2. The shock path for these values i1s shown
in figure (4.1). The shock starts its motion at zero velocity, acceler-
ates, reaching a maximum veloecity at + = l/b, then gradually decelerates
and approaches its terminal position. Over the time interval shown, the
shock has traversed 91 percent of its totsl excursion.

_ For an initisl upstream Mach number of 1.5, the values of U and

C are -1.36458 and 0.90872, respectively (o0 = 5). The corresponding
condlitions downstream of the shock (using the approximste shock transi-
tion relations) are U = -0.73655 and C = 1.03533. The variation of

the downstream flow conditions along the shock path is shown in figure
(4.2). As the shock accelerates, the particle velocity decreases in
magnitude rather rapldly and then increases as it gradually approaches a
final value greater than i1ts initial wvalue. The sonic speed rapidly in-
creases and then decays to a final value somewhat greater than the initilal
value. The values of the downstream Plow conditions shown in figure (4.2)
were obtained by setting o = B 1in equations (4.21). The values of the
coefficients of equations (4.21) (cf. egs. (4.22)) for this case are given
in table (4.1).




70 NACA ™ 1439

Equations (4.21) were programmed for computation on an IBM type-650
digital computer. The equations were progrsmmed to compute the values
of the flow variables at constant values of x, that 1s, at constant dis-
tances downstream of the initial shock location. The variation of parti-
cle veloelty and sonic speed at x = -0.5, -1.0, -1.5 for the shock path
under consideration 1s shown as the curves in figures (4.3), (4.4), and
(4.5), respectively, and is listed in table (4.2). At all cross sections,
the history of the flow variebles is similar. The particle velocity de-
creases rapidly, reaches e minimum, and then greduslly approaches & flnal
value lower than its initial value. The sonic speed undergoes a rapid
increase, reaches a maximum, and then decreases as 1t slowly approaches
a final value greater than the initial value. From this, it is apparent
that the downstream disturbance that would cause the assumed shock motion
conslsts of a compression followed by an expansion. The amplification of
the dlsturbance as 1t moves upstream 1s evident in the figures. At
X = ~1.5, the magnitude of the maximum change in u is 0.0223 units or
5.87 percent of the initial value of the variable. At x = -0.5, the
maximum change in u 1s 0.0360, which is 4.55 percent of its initial
value. Also of Interest is the fact that the greater part of the change
in the flow variables occurs in the first 5 to 6 units of time. During
this Intervel the shock wave has completed only about one-third of its
total movement. ) - - '

One of the purposes of the computation of the flow field behind a
moving shock was to determine the u,c-relation on lines of constant x.
Figures (4.3) to (4.5) have been cross-plotted, and the resulting wu,c-
relations are shown in figure (4.6). At all values 6f x, the u,c-
relation consists of an almost linear variation during the compressilon
process. At the beginning of the expansion process, the curve folds back
on itself and follows an almost stralght path slightly displaced from that
during the compression process. At the larger values of |x], the portion
of the curve representing the expasnsion process moves closer to the sec-
tion representing the compression (i.e., the "hairpin" becomes narrower).

In section III it was assumed that, in the flow field behind the
shock, the value of Q@ at a fixed x remained constent throughout the
transient. This requires, first, that the —u,c-relation at constant x
should be a straight line and, second, that the slope of the strailght
line be equal to o. In figure (4.6) the wu,c-relation is not straight
throughout the entire transglent. This ig principally the result of the
fact that the shock path chosen requires an expanslon as well as a com=-
pression in the downstream disturbence. (Succeeding exemples will show
that, for shock paths which can be produced by compressive dlsturbances,
the relation can be approximated by a stralght line.) The portion of the
curves of figure (4.6) representing the compression process are approxi-
mately straight lines. ZFor these portions of the curves, the slopes have
been measured and are listed below. - - h

622S.
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X du/de
-0.5 5.00
-1.0 5.12
-1l.5 5.26 | _ e

The value of o <for the exsmple is 5. From the table, it is seen that
close to the initial shock location the perturbatlion-series solution glves
a value of 5 for du/dc. At greater distances, the slope incresses.
Therefore, only close to the initisl locstlon of the shock does the u,c-
relation Aduring the compression aspproximate Q = comstant. Thus, for

the region of applicabllity of the first-order Interaction solution of
section ITI, the assumption of constant Q appears to be reasonable.

Since, for the shock to move in the prescribed fashion, the disturb-
ance causing the motion consists of a compression followed by an expan-
slon, the shock comes to rest sooner than it would if the disturbance
were purely compressive in nature. If the path were such that a longer
time Interval were required for the same over-all shock displacement, the
disturbance should gpproach a pure compression. To demonstrate this,
another case was computed for the same initisl conditlons and shock ex~
cursion, but with b = 0.1, one-half the previous value. The shock path
for this value of b 1is shown in figure (4£.7). The time interval for
the shock to complete 91 percent of its travel is approximestely twlice
that for b = 0.2. The history of the flow varisbles on the downstream
slde of the shock during its motion is shown in figure (4.8). (The coef-
ficients of eqs. (4.21) are again given by table (4.1)). Comparison of
this figure with figure (4.2) (b = 0.2) shows that, although the curves
are quite similar in shape, the magnitude of the maximum excursion in
the flow varisbles is much less in the present case. This reflects the
smaller shock velocities during the transient for the lower value of b.

The variations of u &and ¢ with time at constant x for this
example are shown in figures (4.9) and (4.10) for x = -0.5 and x = -2.0,
respectively, and are listed in table (4.3). At x = -0.5, the flow vari-
ables exhibit a sharp rise followed by & gradual approach to their termi-
nal vaelues. At this sectlon the disturbance is purely compressive. Over
80 percent of the change in the flow variables occurs in the first ten to
twelve units of time. During this time period, the shock has moved but
one-third of its total travel. At x = -2.0, a slight expansion follows
the compression process. The magnitude of this expansion i1s, however, a
much smaller proportion of the total change in the variables in ﬁhis case
than for that with b = 0.2.
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The u,c-relation at the two values of x 1s shown in figure (4.11).
At x = -0.5, the relation is essentially a straight line over most of the
range of the varisbles. The fold, characteristic of the expansion in the
first example, does not exist. There is, however, an increase of curva-
ture towards the very end of the transient.- At this value of x, the
slope of the straight portion of the curve is 5.00, as it was at the seme
station for the larger velue of b. At x = -2.0 (fig. (4.11b)), where
there is an expansion process of small mesgnitude following the compres-
sion, the u,c-relation folds back on 1ltself-as in the first example.
The major portion of this curve is essentially a straight line with a
slope of 5.48; this aegeln indicates the increasse of the-slope of the
stralght portion of the u,c-relation with distance from the initial
shock location.

2, Comparigon wilth the method-of-characteristics solution. - To check
the accuracy of the representation of the flow fleld behind a moving shock
wave afforded by the perturbation-series solution, the flow field was com-
puted by the method of characteristics. For this computatlion the condi-
tions on the downstream side of the moving shock wave were determined from
the approximaste shock transition relations (eqs. (3.1) and (3.2)) so that
the comparison could be made for the same inltlal conditions. The char-
acteristic net for the "exponential" shock path with B = 3.5, b = 0.2,
and an initisl shock Mach number of 1.5, is shown in figure (4.12). The
values of the flow variables at constant—x were obtained by linear in-
terpolation between the net points and are shown as the date symbols on
figures (4.3) to (4.5). At all values of x, the variation of u an ¢
with time as determined by the method of characteristlcs 1s quite simllar
to that given by the perturbation-series solution. There is an initial
rapid compression followed by an expansion process. At x = ~0.5, the
two solutions are in excellent agreement during the first elght units of
time. After this time period, the values of ¢ given by the method of
characteristics are greater and the values of u smaller than those of
the perturbation-series solution. At greater distances from the initial
shock location these errors increase. The maegnitude of-the differences is
always greatest towards the end of the transient. Further, the errors
are proportionally greater for the sonic speed than they are for the
particle velocity.

These errors result primsrlly from the representation of the under-
lylng steady flow afforded by the perturbation serles rather than from
the representation of the transient process.” It will be recalled from
section II that the convergence and accuracy of the series solution for
steady subsonic flow were poorest when the boundary condltions were
specified st x = L, that is, at a high-veloclty section. This is seen
in figure (2.13), where even the third-order solution is accurate only
for relatively short distances downsitream from the boundary. This figure
also shows that the accuracy of the representation of the sonic speed is
mich poorer than that of the particle velocity. The rather rapid decrease
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in accuracy with distence from an upstream boundary causes not only the
errors at the beginning of the transient but also accounts for the in-
crease of the error with time at a given value of x.

The coordinate axes for the inverse-shock problem are located so
thet the origin coincides with the initial shock loecation. Therefore,
during the course of the transient the shock wave, or carrier of the
sponds to greater distances from the initial data carrier as time in-
creases. The error in the magnitudes of the flow variables should,
therefore increase with time at a constant X, as observed in figures
(4£.3) to (4.5).

To indicate the order of magnitude of the error that can be expected
in the origlnal steady flow, the second-order steady-flow solution was
computed for a duect with € = 0.1, with the initial data given at the
cross section with & Mach number of 0.7. This Mach number is close to
that behind & shock at Mach 1.5 for o = 5. The results are shown in
figure (4.13) as the solid curves. The exact values are shown as the
dashed curves. The rapid increase of the error in ¢ with |x| is quite
apparent. From these curves it is easily seen that a large proportion of
the error in the flow varisbles observed in figures (4.3) to (4.5) is
attributable to the inaccuracy of the representation of the underlying
steady flow.

To 1llustrate the effect of initial shock Mach number on the results,
an example was calculated for an "exponentisl" shock path with B = 3,
b= 0.1, €= 0.1 and an initial shock Mach number of l.4. The shock path
for this case is shown in figure (4.14) and the flow conditions on the
downstream side of the shock in figure (4.15). The coefficilents of equa~
tions (4.21) for this case are given in table (4.4). The variation of
the flow varisbles et x = -0.5 and -1.0 are shown in figures (4.16) and
(4.17), respectively, and are listed in table (4.5). The histories of
the flow variables for this case are very similar in ngsture to those given
previously for a shock initlally at Mach 1.5 moving on an exponential path
with b= 0.1. At x = -0.5, the disturbance is entirely compressive with
the major portion of the change in the flow variables occurring in the
first ten units of time. At x = -1.0, the compression process is fol-
lowed by a very slight expansion process. The ampliflcation of the dis-
turbance as it moves upstream is quite evident. The u,c-relations at
the two values of x are shown in Ffigure (4.18). Again, these curves
are almost stralght lines with that at x = -1.0 showing the characteris-
tic fold that indicates the expansion process. -

This case was also solved by the method of characteristica. The
results are shown as the data symbols in figures (4.16) and (4.17). As
in the earlier example, the representation of the particle veloelity is
more accurate than that of the sonic speed. Again, the history of the
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flow variables given by the method-of-cheracteristics solution is very
gsimilar to that from the series solution. The errors increase with time
at g fixed value of x and are greater at the larger value of x. In
this case the errors are relatively larger _than those observed for an
initial Mach number of 1.5. The increase in relative error is caused by
the fact that, for an initial shock Mach number of 1.4, the downstreamn
flow 1s specified at a cross section with higher subsonic velocity than
for a shock at Mach 1.5. Thls further diminishes the sccuracy of the
series representation of the underlying steady flow.

3. The "cosine" path. - The examples presented thus far have all been
for the "exponential” shock path given by equation (4.23). For this path
it was seen that the u,c-relation at constant x could be approximsted
by stralght lines for the compresslon snd expansion phases of the disturb-
ance. To demonstrate that such an spproximation holds for other shock
paths, equations (4.21) were evaluated for a path given by

2 B(1 - cos at), 0 wt < m
£(t) =4 0, ot < 03 (4.24)

B, ot > x.

Thig path satisfies equations (4.3) and (4.4), and the magnitude of the
excursion of the shock is given by the coefficient B. For convenience,
this path willl be referred to as the "cosine™ path.

The case investigated was for B = 3.5 and o = x/20 with an ini-
tial shock Mach number of 1.5. The total shock motion and initial shock
Mach number are the same as those of the Pirstexample for the "exponen-
tial" path. As the coefficlents of equations (4.21) are functions of the
Initial conditions only, the values given in table (4.1) apply to the
present example. The history of the flow variables at x = -0.5 and
-1.0 are shown in Pigures (4.19) and (4.20), respectively, and are listed
in table (4.8). For the shock to move on the prescribed path, the dis-
turbance conslsts of a compression followed by an expansion process. The
trigonometric nature of the shock path function is reflected in the ap-
pearance of the variations of u &and c¢. The variation of u and ¢
have the appearance of slightly distorted, displaced cosine functions.

The u,c-relations at constant x are shown in figure (4.21). For
the "cosine" path, the relation agaln consigts of an alwost straight
section followed by an abrupt fold to a second straight section, charac-
teristic of the expansion process. Agaln, the slope of the straight
portion of the u,c-curve I1ncreases with distance from the initial shock
location. The character of the relation between the downstream flow
varlables ls thus seen to be relatively independent of the nature of the
shock path.

. 822S
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C. Digcussion

From the examples presented, it can be seen that the perturbation-
series solution gives a fairly asccurate picture of the history of the
flow varisbles downstream of & moving shock wave. The agreement of the
series solution with the method-of-charascteristics solution is not as
good as that observed for the unsteady-flow examples given in section II.
However, the discrepancies were shown to arise primsrily from the series
representation of the underlying steady.flow. For subsonic flow specified
on an upstream boundary at which the flow veloclity is high, the series
representation of the steady flow is much less accurate than that for a
flow specified at a low-speed downstream boundary.

For an "exponential" shock path (which approximates that obitained
in section III for the direct interaction problem) the greater part of
the change in the flow variables was seen to occur during the early part
of the transient. During this early part of the transient, the shock
moved but & small part of its total travel. This is similar to the result
obtained in section III, where it was found that, for the disturbance
function employed, most of the shock motion occurred efter the downstream
conditions had ceased to vary. For the "exponential" path with Db = 0.1,
the variation of the flow vasriables at constant x (cf. fig. (4.9)) cen
be reasonably spproximated by the disturbance function given by equation
(3.33). The largest discrepancies for such en approximation would ocecur
in the region of the "knee" of the curves of figure (4.9).

The u,c-~relations at constant x were seen to be approximately
straight-line relations for the "exponential" paths that did not require
expansion processes to bring the shock to rest. For values of x close
to the initial shock location, the u,c-relation can be approximasted by
the Q = constent relation employed in section III. At greater distances
from the initial shock location, the slope of straight portion of the
u,c-relation dincreases; this indicates that the constant Q assumption
employed in section ITI is reasonebly accurate only for short distances
downstream of the shock.

For shock paths requiring an expansion process to arrest the motion
of the shock, the u,c-relation at constant x 18 elmost a straight
line during the compression process. At the peak of the compression,
the u,c-relation abruptly folds back on ltself and follows a slightly
different, but again almost straight, path during the expansion process.
This was true not only for the "exponential’ path but also for the "cosine"
path; this indicates that the relationship between the dependent variables
is not greatly influenced by the nature of the shock path. _
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To compute the series solution at a given value of x required
sbout 7 minutes of digital computer time. Therefore, to compute the solu-
tion at three values of x required about 21 minutes of machine time.

The method-of-characteristlics solution required 145 minutes of machine
time to compute the net points covering the same range of—x and t.

To this time must be added that required to perform the necessery inter-
polations. The series solution offers, therefore, & considerable saving
in computational effort for the solution of this problem.

Yewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, Aug. 22, 1958

62258
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APPENDIX - SYMBOLS

A cross-sectional area of cut

B amplitude

By coefficients, eq. (3.32)

b dimensionless constant _
C initial value of sonlc speed

3] sonic speed immedistely upstream of stationary shock

C+ characteristic of family with slope u + ¢

C- characteristic of family with slope u - ¢

Cgk) coefficient of j-th member of k-th order terms in serles for sonic

speed .

c sonlc speed
T sonic speed upstream of shock
Dy coefficients, eq. (3.36)
Eyq coefficients, eq. (4.14)
K eqs. (2.48) and (2.47)
L duct length
M Mach number
N eqs. (2.46) and (2.47)
P pressure

Riemsnn invarlent, u - oc -
Ry coefficlents, eq. (3.28)
84 coefficients, eq. (3.29) o

T time
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coefficient of j-th member of k-th order terms in series for time

time
Initial value of particle velocity

perticle velocity immedistely upetream of stationary shock

coefficlient of Jj-th member of k-th order terms in series for
particle velocity

628

particle velocity
partlcle velocity upstream of shock
dimensionless shock velocity

shock veloclty .

coefficlient of Jj~th member of k-th order terms in series for space
coordinate : .

space coordinate

space coordinate, two-dimensional steady flow
characteristic parameter of family with slope u - ¢
characteristic parameter of family with slope u + ¢

ratio of specific heat at constant pressure to gpecific heat at
constant volume

perfod _
"smallness" parameter

eq. (2.23)

eq. (2.31)

index

parameter - - -

2/(r - 1)
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T parameter N
w» circular frequency

Subscripts:

8 at shock location

* critical condition
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TABIE 2.1. - COEFFICIENTS OF EQUATIONS (2.58) FOR

U=

-0.37879, C = 1.08226, AND o

=5 (y = 7/5)

C

k 0

1

2

(k)
X3

EEJ
COONOU B UMK

+0.47484

-0.03988
+1.36687
+0.31687
+1.12250

-0.01455
+0.47507
-0.10007
+0.16204
+0.46192
+0.88876
+0.02252
-0.17960
-2.19853
-0.74323
+1.82431

Cw

by
(@]

2

I_l
I::O(Om'\lO)UIIP(NNI-"

+0.32500
+0.687500

+0.04851
+0.45044
-0,93554
-0.32339

+0.00918
-0.20309
-0.00182
-0,10492
-0.16017
-0.60830
+0.03201
-1.35535
+0.86443
-0.41621
+0.67234

> NN

-0.20497
+2 .50000

-0.05409
-0.47044
+0.84923
+0.56818

81

k 1

o)

(1S NV o

-0.01434
+0.50000

-0.00776
+0.05715
+0.24655
+0.30370
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TABLE 2.2. - COEFFICIENTS OF EQUATIONS (2.69) FOR

U = -0.37879, C = 1.08226, AND o =5 (v = 7/5)

k 0 1 2
J
1 |+0.47484 | -0,03989 | «0.01455
2 +2.73375 | +0.95014.
(x) 3 +0.42249 | -8.79412
XJ 4 +0.00853
5 +2.43241
6 +1..99698
7 -0.12190
k 0 1 2
J
1 +0.32500 | +0.04850 | +0.00917
2 +0.67500; ~-1.87108 | -0.40619
(k) 3 +0.60059 | +3.45775
TJ 4 +0.20080
5 -1.66484
6 +2.83877
7 +0.33296
k 1 2
J
(x) 1 -0.20497 | -0.05409
U'j 2 +5.00000 | +1..69846
3 -0.81778
k 1 2
J
(k) 1 -0.01434 | -0.00776
CJ 2 +1.00000 | +0.48310
3 +0.11431

6%2S
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TABLE 3.1.

(x)
T3

- COEFFICIENTS CF

EQUATIONS (2.89) FOR

U= -0.73179, C = 1.04541, 0 = 5

k 1 2
J

1 |-0.38251| -0.08017

2 | +5.00000 | +1.91049

3 -0.33714

k 1 2
J

1 [-0.05355] -0.02799

2 | +1.00000 | +0.75531

3 +0.02352

k 0 1 2
J

1 |+0.26658 | -0.15383| -0,05611
2 +4.33501| +2.04768
3 +0.08000 |~13.17180
4 -0.09825
5 +1.46353
6 +0.20394
7 -0.14828

k 0 1 2
J

1 | +0.15000 | +0.10044 | +0.02083
2 1+0.85000 | ~2.43924| -0.70069
3 +0.28697 | +4.66657
4 +0.08572
S -0.82350
6 +2.88229
7 +0.16470
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TABLE 3.2. - NUMERICAL INTEGRATION OF EQUATION FOR SHOCK PATH FOR

NACA ™ 1439

6225

U= -0.73179, C = 1.04541, U = -1.36458, C = 0.90972, AND X = 0.00700 »
B First order h Second order
a X © fe2 X t

O} 0.02629 | 0.00700| 0.02236 0.02629 | 0.00700| 0.02236

2 2.12527 03421 2.10595 2.12536 03424 2.10602
4 4.,26928 .07525 4 .22668 4.26996 .07542 4.22724

6 6.42758 .11844 6.36060 6.42942 .11895 6.36214

8 8.56341 .15480 8.47593 8.56651 .15576 8.47852
10 { 10.67989 18570 | 10.57512 || 10.68403 .18685 | 10.57859
l2 | 12.77972 21177 | 12.66034 || 12.78450 .21308 | 12.664.36
14 | 14.86522 .23386 | 14.73349 || 14.87020 .23521 | 1473769
16 | 16.93839 .25258 | 16.79622 |} 16.94315 .25386 | 16.80022
18 | 19.00099 .26846 | 18.84997 (| 19.00513 .26957 | 18.85344
20 | 21.05451 .28195 | 20.89598 || 21..05770 .28280 | 20.89864
22 | 23.10025 .29340 | 22.93534 |1 23.10223 .29393 | 22.93697
24 | 25.13932 30314 | 24.96900 || 25.13890 .30330 | 24.96943
26 | 27.17268 .31141 | 26.99777 |} 27 .17174 .31118 | 26.99689
28 | 29.20115 .31845 | 28.02234 || 29.198883 .31781 | 29.02010
30 | 31.22545 .32443 | 31.04332 || 31..22132 .32333 | 31.03969
32 | 33.24618 .32952 | 33.06123 || 33.24045 .32808 | 33.05622
34 | 35.26387 .33386 | 35.07652 || 35.25657 33202 | 35.07015
36 | 37.27895 .33754 | 37.08955 | 37.27015 .33533 | 37.08189
38 | 39.29181 34068 | 39.10067 || 39.28158 .33812 | 33.09178
40 | 41.30277 34335 | 41.11016 1} 41..29121 . 34046 | 41.10011
42 1 43.31211 .34563 | 43.11824 || 43.29930 342472 | 43.,10712
44 | 45,32008 .34756 | 45.12514 || 45.30612 .34408 | 45.11301
46 | 47 .32686 .34921 | 47.13101 (| 47.31185 34547 | 47.11797
48 | 49.33265 .35062 | 49.13602 || 49.31.687 . 34663 | 49.12215
50 | 51.33758 .35181 | 51.14029 | 51.32072 .34762 | 51..12566
52 | 53.34178 .35283 | 53.1439Z || 53.32413 .34844 | 53,12861
54 | 55.34536 .35370 | 55.14702 || 55.32699 .34913 | 55.13108
56 | 57.34840 .35243 | 57.14967 | 57.32940 .34972 | 57.13317
58 | 59.35100 .35506 | 59.15191 || 59.33142 .35021 | 59.13492
60 | 61.35321 .35560 | 61.15383|f 61.33313 .35062 | 61.13640
62 | 63.35510 .35605 | 63.15546| 63.33456 .35096 | 83.13764
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TABIE 3.3. - COEFFICIENTS OF EQUATIONS (2.69) FOR

U= -0.63481, C = 1.05801, 0 = 5

5239

k 1 2
J
(k) 1 [-0.33582| -0.08243
Ud 2 |+5.00000 | +1.86210
3 -0.46552
k 1 2
J
(x) 1 -0.04030 | -0.02132
C'j 2 |+1.00000 | +0.67713
3 +0.04232 |
k 0 1 2
J
1 +0.33856 | -0.11445] -0.04173
2 +3.84002| +1.69622
(k) | 3 -11.79578
Xj 4 -0.09344
5 +1.81471
6 +1.20981
7 -0.16319
k (o] 1 2
J
1 +0.20000 | +0.08507| +0.01716
2 1+0.80000 |-2.26841| -0.60600
(i) 3 +0.37806| +4.28808
T 4 +0.11520
J 5 -1.07201
6 +2.85871
7 +0.21440
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TABLE 3.4. - NUMERICAL INTEGRATION OF EQUATION FOR SHOCK PATH FOR

U = -0.63481, C = 1.05801, U = -1.36458, C = 0.90972, AND X = 0.83000

B First order Second order
o b4 t o x t

0 2.69884 | 0.83000 2.22018 2.72931 | 0.8299% 2.24933

2 4.79665 .86977 4.29379 4.77498 .85655 4.27834
4 6.93161 .92103 6.39908 6.86908 .89708 6.34890
6 9.11598 .97238 8.55485 9.01770 .93749 8.47476

81]11.28114 1.01771 | 10.69487 | 11.14585 .97184 | 10.58363
10 | 13.42907 1.05779 | 12.82069 }j 13.25611 | 1.00099 | 12.67757
12 | 15.56156 1.09326 | 14..93369 |} 15.35078 1.02574 | 14.75841
14 { 17.68018 1.12468 | 17.03511 |} 17.43181 1.04672 | 16.82784
16 | 19.78637 1.15253 | 12.12610 |l 19.50134 1.06452 | 18.88736
18 | 21.88138 1.17723 | 21.20769 || 21..56065 | 1.07961 | 20.93828
20 | 23.96837 1.19915 |1 23.28079 (| 23.61126 1.09220 | 22.98179
22 | 26.04237 1.21861 | 25.34627 || 25.65440 1.10324 { 25.01891
24 | 28.11031. | 1.23589 | 27.40488 || 27.69113 1.11243 | 27 .05056
26 | 30.17102 1.25125 | 29.45733 || 29.72238 1.12021 | 29.07750
28 | 32.22526 1.26490 | 31..50424 || 31.74895 1.12680 | 31..10042
30 | 34.27369 1.27703 | 33.54617 {| 33.77152 1.13238 | 33.11991
32 | 36.31694 1.28781 | 35.58364 || 35.79069 1.13710 | 35.13646
34 | 38.35553 1.29740 | 37.61711 |} 37.80696 1.14113 | 37.15052
36 | 40.38998 1.30593 | 39.64700 || 39.82077 1.14450 | 39.16245
38 | 42.42071 1.31352 | 41..67368 || 41..83247 1.14737 | 41.17257
40 | 44.44812 1.32027 | 43.69750 |} 43.84240 1.14980 | 43.18118
42 | 46.47257 1.32627 | 45.71875 |} 45.85081 } 1.15186 | 45.18844
44 | 48.,49436 1.33162 | 47.73771 |} 47.85795 1.15360 | 47.19461
46 | 50.51380 1.33637 | 49.75462 || 49.863392 1.15507 | 49.19984
48 | 52.53112 1.34060 | 51..76969 || 51..86911 1.15632 | 51..20427
50 | 54.54656 1.34437 | 53.78313 || 53.87345 1.15738 | 53.20802
52 | 56.56032 1.34772 | 55.79512 || 55.87712 1.15828 | 55.21120
54 | 58.57258 1.35070 | 57.80580 11 57.88023 1.15803 | 57.2138¢9
56 | 60.58350 1.35335 | 59.81532 || 59.88287 1.15967 | 59.21618
58 | 62.59324 1.35571 | 61.82380{f 61.88510 1.16022 | 61.21811
60 | 64.60191 1.35782 | 63.83136 1 63.88699 1.16068 | 63.21974
62 | 66.60963 1.35969 | 65.83803 || 65.88859 1.16107 | 65.22113

62258
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TABLE 4.1. - COEFFICIENTS OF EQUATIONS (4.21) FOR
= -1.36458, C = 0.90972, U = -0.73655, C = 1.03533,

i}
€ =0.1, 0 = 5, By = -0.000379, E5 = 1.17851, E, = -0.54772

5239

X 1 2
J
1 | -0.38128| -0.08870
(k) | 2 |+1.17851| -0.19741
U 3 -0.35031
4 -0.44777
k 1 2
J
1 | +0.05425 | +0.02808
(x) | 2 |+0.23570| -0.02415
Cy 3 +0.02377
4 +0.17869
k 0 1 2
J
1 |-0.25567 | +0.15729 | +0.05741
2 +0.87534 | -0.74701
3 +0.12466 | -0.08808
(x) | 4 +1.03554 | -0.01701
X5 5 -0.32413
6 -0.15189
7 +0.48854
8 +0.50493
k 0 1 2
J
1 |+0.14429 |-0.10307 |-0.02171
2 |-0.85571 | -0.41724 |-0.26610
3 -0.58443 |{+0.31446
()| 4 -0.05693
T3 5 +0.14965
. 6 -0.09983
7 +0.16785
8 -0.28497
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TABLE 4.2. - SERIES SOLUTION FOR FLOW FIELD BEHIND
"EXPONENTTAL" SHOCK PATH
Initial Shock Mach Number = 1.5

B=3.5b=0.2,e=0.1,0=5

g x = -0.5 x =<=1.0
a t -u c a t -u c

0 | -1.77450]-1.48721|0.67168(1..04407 || -3.31655|-2.73255]0.61985| 1.05022
1 -. 73179 -.44361) .66077[1.04624 |{-2.2%927[~1.65384| .61071|1.05200
2 .26073 .55106} .65302/1.04780 || -1.22390| -.63541] .60419]1.05329
3 1.21853| 1.51527| .6477811.04887 -.24771 .34441 ) .59975|1.05418
4 2.15378| 2.46068| .64443|1.04958 .70227 | 1..29955| .59692|1.05476
5 3.07584| 3.39503| .64245(1.05002 1.63276| 2.23926{ .59529{1.05511
6 1 3.99107| 4.32366| .64144|1.050286 2.55195| 3.17023| .59449|1.05529
7 4.90392| 5.25029| .641091.05037 3.46574! 4.09718| .59428]1.05537
8 | 5.81751) 6.17755] .6411811.05039 || 4.37825| 5.02342! .59444|1.05536
9 6.73401| 7.10728| .64155|1.05036 5.29235( 5.95130| .59484|1.05531L

10 | 7.65486| B.04069| .64208|1.05028 || 6.21002| 6.88238| .59538]1.05523
11 | 8.58100| 8.97857| .64269|1.05019 || 7.13254| 7.81769| .59599|21.05513
1z | 9.51292| 9.92135| .64334[1.050089 |{{ 8.06064| 8.75781| .59662]1.05502
13 | 10.45084]10.86920| .64398)|1.04998 || B.99477| 9.70307| .59725]1.05492
14 {131.39474(11.82209| .B4459|1.04988 || 9.93498/10.65348| .59784|1.05482
15 (12.34443112.77988| .64517}1.04978 [{10.88118|11.60894| .59839|1.05472
16 (13.29964113.74232| .64570|1.04970 (;11.83313(1%5.56923| .598901.05463
17 | 14.25998(14.70908| .64618{1.04961 {|12.79048]|13,53404| .59936|1.05455
18 | 15.22507)15.67984| .64661/1.04954 ||13.75285|14.50304 | .59978| 1.05448
19 [16.19447)16.6542%3| .64700|1.04947 [|14.71981[15.47585| .60014|1.05442
20 | 17.16778]17.63189| .64734;1.0494]1 ||15.69092]|16.45212{ .80047]1.05436

B x = -1.5
o t -u c

0| -4.72877 | -3.83893 { 0.57608 | 1.05470
1l -3.62947 | -2.73757 .56812 | 1.058619
2| -2.59981 | -1.70367 .56243} 1.05727
3| -1.61501 1 -.71374 .55857 | 1.05801
4 -.65878 .24769 .55610 | 1.05850
5 27966 | 1.19117 .55467 | 1.05879
6 1.20404 2.12365 55401 | 1.05893
7 2.11984 | 3.,05046 .55387 | 1.05898
8| 3.03222 3.97549 .55408| 1.05895
9 3.94477 4.,90146 .55451. | 1.05889
10| 4.85995 | 5.83024 .55507 | 1.05880
11| 5.77943 6.786306 .55568 | 1.05869
12 6.70423 | 7.70066 .55632 | 1.05858
13| 7.83492 8.64340 55693 | 1..05847
14 8.57172 9.59142 .55752 | 1..05836
15 9.51464 | 10.54464 .55807 | 1.05826
16 | 10.48348 | 11.50285 .55858 | 1.05817
17 | 11.41795 | 12.46577 .55803 | 1.05809
18 | 12.37766 | 13.43305 .55944 1 1..05801
19 ] 13.34221 | 14.40433 .55981 | 1.05794
20 | 14.31115 | 15.37922 .56013 | 1.05788
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TABIE 4.3. - SERIES SOLUTION FOR FILOW FIELD EBEHIND
"EXPONENTTAL" SHOCK PATH
Initial Shock Mach Number = 1.5
B=3.5, bp=0.1, € =0.1, 6 =5
B x = -0.5 x = =2.0
a t -u c a t -1 c

0| -1.77449]-1.48721)0.67168]1.04407|}-6.062101{-4.85682}0.53801|1.05789
2 .23813 .52627| .66604|1.04520|1-4.01271|~-2.80519| .53436|1.05854
4 2.20876] 2.50203| .66169}1.04608|\-2.01305| ~-.80075| .53157}1.05905
6 4.15117| 4.45427| .6584111.04678| ~.04556| 1.17249| .52949|1.05943
8 6.07667| 6.39225| .85596(1.04731( 1.89872| 3.12480| .528001.05971
10 7.99307| 8.32244) .65414(1.04771} 3.82618) 5.06339| .52697]1.05990
12 9.90582110.24450| .65281(1.04802|i 5.74448| 6.99577| .52630(1.06003
14 {11.81868{12.17613| .65183[1.04826l| 7.65907| 8.92565| .525871.06010
16 | 13.73423(14.10994| .85112|1.04844( 9.57373|10.85190| .52562|1.06014
18 | 15.65416|16.03016| .650601.04858]|11.49103112.78483| .52550}1.06016
20 | 17.57950117.97560| .65023|1.04889||13.41267|14.72463| .52546|1.06016
22 119.51081|19.91099| .64996(1.04877{|15.33968116.66934| .52548|1.06015
24 | 21.44832(21.86816| .64977|1.04883||17.27261.[{18.60309] .52554}1.06013
26 | 23.39199]23.81679| .64963]1.04888|[19.21165|20.55725| .52562{1.06011
28 | 25.34159125.77517| .64954|1.04892|21.15676(22.51121| .52571|1.06009
30 | 27.29682127.74060| .64948|1.04895([23.10771(24.47308} .52580{1.06006
32 | 29.25727|29.70976| .64944|1.04897||25.06418(|26.44001| .52590|1.06004
34 | 31.22253131.67907 .64942|1.04898(27.02577|28.40870( .52599|1.06002
36 | 33.19213|33.65483| .564941(1.04899(|28.99205|30.38558] .52607|1.05988
38 | 35.16565] 35.63334| .6494111.04900}(30.96258|32.35703| .52616|1.05998
40 | 37.14270|37.61138[ .6494111.04901[{32.93693|34.33950| .52623;1.05996
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TABLE 4.4. - COEFFICIENTS OF EQUATIONS (4.21) FOR

= -1.29987, C = 0.92848, U = -0.77119, C = 1.03421

0.1, o = 5, Ey = -0.04598, Eg = 1.24223, E, = -0.77151

(x)
Ys

C(k)

(k)
X3

(x)

k 1 2
J
1 | -0.39879 | -0.09164
2 | +1.24226 | -0.20130
3 -0.57021
4 -0.47708
k 1 2
'j J—
1 | +0.05947 | +0.03075
2 | +0.24845 | -0.02711
3 -0.01887
4 +0.19576
k o 1 2
J
1 | -0.22958 | +0.17262! +0.06301
2 +0.88891| -0.85824
3 +0.11108| -0.08957
4 +1.13569 -0.01363
5 -0.53452
6 +0.16612
7 +0.54863
8 +0,54956
k o] 1 2
J
1 | +0.12716| -0.10815| -0.02299
2 | -0.87284 -0.42236| -0.30224
3 -0.62905| +0.36264
4 -0.05181
S +0.07735
6 -0.10428
7 +0.18565
8 -0.30440
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TABLE 4.5. - SERIES SOLUTION FOR FLOW FIELD EEHIND
"EXPONENTTIAT." SHOCK PATH
Initial Shock Mach Number = 1.4
B=3.0,b=0.1, ¢e=0.1, =5
p x = =0.5 x = -1.0
O t -u c a t -u c

0}-1.92014|-1.8377310.69792]1.04450 || ~3.53678} ~2.96193|0.64161)1.05140
2 .09526 .37839| .69320|1.04545|| -1..50456] -.92850| .63770]1.05215
4] 2,08954| 2.35679}| .68953|1.04619 48409 1.06267| .63473|1.05273
6] 4.01594| 4.31122 ] .68680]1.04675 2.44137] 3.02605] .63252}1.05316
8| 5.94544 | 6.25110 | .68478|1.04717 4.37785| 4.97192| .63094|1.05347
10| 7.86566| 8.18294 | .68331!11.04749 6.30224} 6.90760! .62981{1.05369
12| 9.78194110.11133 | .68224|1..04772 8.22072| 8.83829) .62902]1.05384
14111.69800112.03947 | .68147|1.04789 || 10.13758;10.76764; .62848|1.05394
16§13.6164013.96956 | .68092}1.04801 {|12.05585|12.69820| .62812]1.05400
18|15.53883 (15.90307 | .68052|1.04810|{13.97754|14.63166 .62788)1.05404
20117 .46637 |17 .84093 | .68024}1.04816 {|15.90394{16.56914| .62773|1.05406
22119.39958|19.78365| .68004|1.048211)17.83582]18.51127| .62764}1.05407
24 121.33873(|21.73144 | .6798911.048241|19.77353|20.45836| .62759|1.05407
26 123.28381|23.68431| .67980]|1.04827]j21.71715;22.41047) .62758|1.05406
28 (25.23462 |25.64210| .67973|1.04828 || 23.66653|24.36749| .62758 1.05405
301(27.19088|27.60456 | .67969|1.04829 || 25.62145|26.32921| .62760|1.,05404
32129.15223129.57137 | .67966}1.04830 (| 27.58155]28.29533| .62762|1.05403
34131.11824|31.54219( .87965|1.04831 1| 29.54640|30.26549 .62765}1.05402
36 (33.08849(3%.51665| .6796411.04831 (] 31.51560|32.23935| .62767|1.05401
38 |35.068256 |35.49439 | .67964]1.04831 || 33.48873|34.21654| .62770{1.05400
40137.04004 137 .475068 | .67964|1.04831 || 35.46538| 36.19672| .62773|1.05399
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TABLE 4.6. - SERIES SOLUTION FOR FLOW FIELD BEHIND
"COSINE" SHOCK PATH -
Initial Shock Mach Number = 1.5 -
B=3.50=1x/20, € =0.1, 0 =5
B x = =0.5 x = =1.0
a t -u o] a t -u c
O[-1.774491-1.4872110.67168(1..04407 -3.31656 (-2.73255 |0.61985|1.05023
1] -.75764] -.47004| .66762|1.05488 -2.286581-1.70208} .61646/1.0508%9
2 .24558 .53406 | .66334|1.04574 -1.27007 | ~.68427} .61288|1.05159
3| 1.23427! 1..52548| .65900{1.04661 -.26692 .32079| .80923(1.05231
41 2.20861] 2.50487| .6547211.04749 .72269 | 1.31329| .80564 |1.05303
51 3.16962| 3.47304] .65063{1.04833 1.69787| 2.29364; .60220(1.05372
6| 4.11850| 4.43099] .64684|1.04212 2.65942 | 3.26251| .59902 [1..05436
71 5.05658] 5.37981l | .64344(1.04983 3.60841 | 4.22076 | .59618(1.05495
8| 5.98532| 6.32066| .64053|1.05045 4.54611 | 5.16940| .5937511.05545
9) 6.90620| 7.25476| .63817|1.05096 5.47392 ] 6.10955| .59179|1.05586
10| 7.82083| 8.18342| .63638|1.05136 6.39340 | 7.04246| .59034 |1.05617
11| 8.73087| 9.108001 .63522]1..05163 7.30619{ 7.96946| .589431.05637
12| 9.63804{10.02992| .63468|1.05178 8.21407 | 8.89201| .589051.05647
13110.54415(10.95066} .63475;1.05180 ©.11886| 9.81162 | .58921|1.05646
1411.45103(11.87178| .63542{1.05170 10.0226010.72999| .589881.05636
15112.36060{12.79489 | .63665({1.05149 10.92722 111.64877 1 .59103|1.05616
16[13.27477113.72163| .63840(1.05117 11.83482 [12.56975| .59262|1.05587
17114.19551}14.65362| .64062|1.05075 12.74750|13.49473 | .59461(1.05550
18115.12478|15.59276 | .64324!1.05025 13.66733 |14 .42555| .59694|1.05506
19/16.06438|16.54044 | .64622(1.04968 14.59633 {15.36399| .59955|1.05457
20117.01610{17.49829| .64947]1.04905 15.53644-|16.31174 | .60239]1.05403
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Figure 2.1. - Charecteristics of steady duct flow. A = e P(¥-2),
b=1, o= 1.
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Figure 2.2 - Varistion of flow paremeters with x. A = e-P(X-2),
b = l, o= 1.
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Figure 2.3. - Area variation for "epsilon duct"; € = 0.1, L = 6.
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Figure 2.4. - Particle velocity as a function of x.
"Epsilon duct": € = 0.1, L

ifled on x = O.
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Subsonic flow spec-
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Figure 2.5. =~ Soniec spéed as a function of x. Subsonlc flow specified on
x = 0. "Epeilon duct":& = 0.1, L =6, o= 1. -
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Figure 2.6. - x as a function of (o - B). Subsonic flow specified on x = 0. "Epsilon

duet”:

e= 0.1, L=6, 0= 1.
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Figure 2.7. - B = 0 Characteristic.
"Epgilon duct": € = 0.1, L= 6, o= 1.

Subsonic flow specified on x = 0.
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Figure 2.8. - Flow varisbles as & function of x. Subsonic flow specified
on x= 0. "Epsilon duect": € = 0.1, L= 6, o= 5. )
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Figure 2.8. - Concluded.

flow specified on x = O.
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(b) Sonit speed.

Flow varlgbles gs a function of x. Subsonic

"Epsilon duct": € = 0.1, L = 6, 0= 5.
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(e) Particle velocity.
Pigure 2.9. - Flow variebles as a function of x. Subsonic flow specified on x = 0. "Epsilon

duet”: €= 0.2, L= 3, o= 5.
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(b) Sonic speed.

Figure 2.9. - Concluded. Flow variables as & function of x. Subsonlc flow specified on x = 0.

"Bpsilon duct": £ = 0.2, L =3, 0= 5.
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(a) Particle velocity.
Flgure 2.10. - Flow variesbles &s a functlon of x. Subsonlc flow specified on x = O.

duct”: €= 0.4, L= 1.5, 0= 5.
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(b) Sonic speed.
Figure 2.10. - Concluded. Flow verlsbles as a function of x. Subsonic flow specified on x = 0.

"Epsilon duet": £= 0.4, L=1.5, ¢ = 5,
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{a) Particle velocity.
Figure 2.11. - Flow varisbles as a function of x. Subsonic flow spec-

ified on x = O.

Y"Epeilon duct”:

€=0.2, L=5, 0=5.
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Figure 2.11. - Concluded.

flow specified on x = O.

x B}
(b) Sonic speed.

Flow variables as a function of x. Subsonic
"Epsilon dugt": €= 0.2, L =5, g= 5. :
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Flgure 2.12. - Flow varisbles as & function of x.
d-uct“: g = 0-2, L = 7-5, Om 5-

Subsonic flow specified on x = 0. "Epsilon
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Figure 2.12., ~ Concluded.

(b) Sonic speed.

"Epsilon duet”: &= 0.2, L= 7.5, 0= 5.

Flow variasbles as s function of x.
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Subsonic flow specified on x = 0.
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(a) Particle velocity.

Figure 2.13. - Flow variables as a function of x. Subsonic flow specified o
on x= L. "Epsilon duct": & = 0.1, L =8, o= 5. - B -
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Figure 2.13. - Concluded.

(b) Sonic speed.

Flow varigbles as s function of x.

Subsonic

flow specified on x = L. "Epsilon duct": €= 0.1, L = 6, 0= 5.
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"Epeilon duct": €= 0.1, L= 6, 0= 5.

Supersonic flow spec-
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Figure 2.15. - Concluded. Flow variables as a function of x. Supersonic

flow specified on x = L.

"Epsilon duct':

€= 0.1, L = 6,

g=05,
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Figure 2.16. - Flow varlsblies as s function of x.
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(b) Sonic speed.

Figure 2.16. -~ Concluded. Flow varlables as a function of x. Supersonlc
flow specified on x = 0. "Epsilon duct": €= 0.1, L = 6, o= 5.
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Megure 2.18, - Varlation of u and ¢ on x = 0.5 for disturbance in ¢ alone on

X=0; £=0.1, o= 5,
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